skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Liquid-like thermal conduction in intercalated layered crystalline solids

Abstract

As a generic property, all substances transfer heat through microscopic collisions of constituent particles. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here in this work, we report liquid-like thermal conduction observed in the crystalline AgCrSe 2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. Finally, these microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.

Authors:
 [1]; ORCiD logo [2];  [1]; ORCiD logo [3];  [4];  [5];  [6];  [7];  [1];  [1];  [8];  [9];  [5];  [6];  [3];  [2];  [1];  [10]
  1. Japan Atomic Energy Agency, Tokai, Ibaraki (Japan). J-PARC Center
  2. Univ. of California, Irvine, CA (United States). Department of Physics and Astronomy
  3. Ames Lab. and Iowa State Univ., Ames, IA (United States). Department of Physics and Astronomy
  4. Julich Center for Neutron Science, Forschungszentrum Julich GmbH (Germany)
  5. Univ. of Hong Kong (China). Department of Mechanical Engineering
  6. Southern University of Science and Technology (SUSTech), Shenzhen (China). Department of Physics
  7. Japan Synchrotron Radiation Research Institute, Sayo, Hyogo (Japan). SPring-8
  8. Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki (Japan). Neutron Science and Technology Center
  9. Hebei University, Baoding (China). Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology
  10. Northwestern Univ., Evanston, IL (United States). Department of Chemistry
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1427732
Report Number(s):
IS-J-9604
Journal ID: ISSN 1476-1122; PII: 4; TRN: US1802604
Grant/Contract Number:  
AC02-07CH11358; FG02-05ER46237
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 17; Journal Issue: 3; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Solid-state chemistry; Structure of solids and liquids; Thermoelectrics

Citation Formats

Li, B., Wang, H., Kawakita, Y., Zhang, Q., Feygenson, M., Yu, H. L., Wu, D., Ohara, K., Kikuchi, T., Shibata, K., Yamada, T., Ning, X. K., Chen, Y., He, J. Q., Vaknin, D., Wu, R. Q., Nakajima, K., and Kanatzidis, M. G. Liquid-like thermal conduction in intercalated layered crystalline solids. United States: N. p., 2018. Web. doi:10.1038/s41563-017-0004-2.
Li, B., Wang, H., Kawakita, Y., Zhang, Q., Feygenson, M., Yu, H. L., Wu, D., Ohara, K., Kikuchi, T., Shibata, K., Yamada, T., Ning, X. K., Chen, Y., He, J. Q., Vaknin, D., Wu, R. Q., Nakajima, K., & Kanatzidis, M. G. Liquid-like thermal conduction in intercalated layered crystalline solids. United States. doi:10.1038/s41563-017-0004-2.
Li, B., Wang, H., Kawakita, Y., Zhang, Q., Feygenson, M., Yu, H. L., Wu, D., Ohara, K., Kikuchi, T., Shibata, K., Yamada, T., Ning, X. K., Chen, Y., He, J. Q., Vaknin, D., Wu, R. Q., Nakajima, K., and Kanatzidis, M. G. Mon . "Liquid-like thermal conduction in intercalated layered crystalline solids". United States. doi:10.1038/s41563-017-0004-2. https://www.osti.gov/servlets/purl/1427732.
@article{osti_1427732,
title = {Liquid-like thermal conduction in intercalated layered crystalline solids},
author = {Li, B. and Wang, H. and Kawakita, Y. and Zhang, Q. and Feygenson, M. and Yu, H. L. and Wu, D. and Ohara, K. and Kikuchi, T. and Shibata, K. and Yamada, T. and Ning, X. K. and Chen, Y. and He, J. Q. and Vaknin, D. and Wu, R. Q. and Nakajima, K. and Kanatzidis, M. G.},
abstractNote = {As a generic property, all substances transfer heat through microscopic collisions of constituent particles. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here in this work, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. Finally, these microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.},
doi = {10.1038/s41563-017-0004-2},
journal = {Nature Materials},
issn = {1476-1122},
number = 3,
volume = 17,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 15 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 4 Fig. 4:

Suppression of TA phonons.

a,b, S(Q,E) surface plots at 150 (a) and 520 K (b) at Ei = 5.931 420 meV in the HR mode. c, Contour plot of S(Q,E) as a function of temperature with Ei = 10.542 421 meV in the LR mode at Q of [2.5,more » 3] Å-1. d, The half-width-at-half-maximum of the TA phonons 422 and the diffuse scattering determined in spectral fitting. Q-dependence of the latter is shown in 423 the inset. The squares and circles are data points obtained in LR and in HR modes, respectively. 424 The dash lines are guide for eyes. Tc is labelled in both c and d« less

Save / Share:

Works referenced in this record:

Localised Ag+ vibrations at the origin of ultralow thermal conductivity in layered thermoelectric AgCrSe2
journal, March 2016

  • Damay, F.; Petit, S.; Rols, S.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23415

Concerted Rattling in CsAg 5 Te 3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance
journal, August 2016

  • Lin, Hua; Tan, Gangjian; Shen, Jin-Ni
  • Angewandte Chemie International Edition, Vol. 55, Issue 38
  • DOI: 10.1002/anie.201605015

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Order–Disorder Transition in AgCrSe 2 : a New Route to Efficient Thermoelectrics
journal, May 2011

  • Gascoin, Franck; Maignan, Antoine
  • Chemistry of Materials, Vol. 23, Issue 10
  • DOI: 10.1021/cm200581k

Giant anharmonic phonon scattering in PbTe
journal, June 2011

  • Delaire, O.; Ma, J.; Marty, K.
  • Nature Materials, Vol. 10, Issue 8, p. 614-619
  • DOI: 10.1038/nmat3035

DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data
journal, November 2009

  • Azuah, Richard Tumanjong; Kneller, Larry R.; Qiu, Yiming
  • Journal of Research of the National Institute of Standards and Technology, Vol. 114, Issue 6
  • DOI: 10.6028/jres.114.025

Localized vibrational modes in metallic solids
journal, October 1998

  • Keppens, V.; Mandrus, D.; Sales, B. C.
  • Nature, Vol. 395, Issue 6705
  • DOI: 10.1038/27625

Projector augmented-wave method
journal, December 1994


Anharmonic thermal motion of Ag in AgCrSe2: A high-temperature single-crystal X-ray diffraction study
journal, October 1989


Phonons and related crystal properties from density-functional perturbation theory
journal, July 2001

  • Baroni, Stefano; de Gironcoli, Stefano; Dal Corso, Andrea
  • Reviews of Modern Physics, Vol. 73, Issue 2
  • DOI: 10.1103/RevModPhys.73.515

EXPGUI , a graphical user interface for GSAS
journal, April 2001


Development Status of Software “Utsusemi” for Chopper Spectrometers at MLF, J-PARC
journal, January 2013

  • Inamura, Yasuhiro; Nakatani, Takeshi; Suzuki, Jiro
  • Journal of the Physical Society of Japan, Vol. 82, Issue Suppl.A
  • DOI: 10.7566/JPSJS.82SA.SA031

Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition
journal, February 1944


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics
journal, April 2015


Data Mined Ionic Substitutions for the Discovery of New Compounds
journal, January 2011

  • Hautier, Geoffroy; Fischer, Chris; Ehrlacher, Virginie
  • Inorganic Chemistry, Vol. 50, Issue 2
  • DOI: 10.1021/ic102031h

The Nanoscale Ordered MAterials Diffractometer NOMAD at the Spallation Neutron Source SNS
journal, September 2012

  • Neuefeind, Jörg; Feygenson, Mikhail; Carruth, John
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 287
  • DOI: 10.1016/j.nimb.2012.05.037

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Avoided crossing of rattler modes in thermoelectric materials
journal, August 2008

  • Christensen, Mogens; Abrahamsen, Asger B.; Christensen, Niels B.
  • Nature Materials, Vol. 7, Issue 10
  • DOI: 10.1038/nmat2273

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems
journal, September 2008


Revisiting AgCrSe 2 as a promising thermoelectric material
journal, January 2016

  • Wu, Di; Huang, Sizhao; Feng, Dan
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 34
  • DOI: 10.1039/C6CP04791B

Collective modes and thermodynamics of the liquid state
journal, December 2015


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Orbitally driven giant phonon anharmonicity in SnSe
journal, October 2015

  • Li, C. W.; Hong, J.; May, A. F.
  • Nature Physics, Vol. 11, Issue 12
  • DOI: 10.1038/nphys3492

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Hopping Time Scales and the Phonon-Liquid Electron-Crystal Picture in Thermoelectric Copper Selenide
journal, April 2017


PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Lower limit to the thermal conductivity of disordered crystals
journal, September 1992

  • Cahill, David G.; Watson, S. K.; Pohl, R. O.
  • Physical Review B, Vol. 46, Issue 10, p. 6131-6140
  • DOI: 10.1103/PhysRevB.46.6131

Renormalization Group Results for Lattice-Gas Phase Boundaries in Two Dimensions
journal, September 1976


Superionic Conduction in AgCrS[sub 2] and AgCrSe[sub 2]
journal, January 1977

  • Murphy, D. W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 8
  • DOI: 10.1149/1.2133543

AMATERAS: A Cold-Neutron Disk Chopper Spectrometer
journal, January 2011

  • Nakajima, Kenji; Ohira-Kawamura, Seiko; Kikuchi, Tatsuya
  • Journal of the Physical Society of Japan, Vol. 80, Issue Suppl.B
  • DOI: 10.1143/JPSJS.80SB.SB028

Phase Change Materials: Challenges on the Path to a Universal Storage Device
journal, March 2012


Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices
journal, December 2013

  • Ravichandran, Jayakanth; Yadav, Ajay K.; Cheaito, Ramez
  • Nature Materials, Vol. 13, Issue 2
  • DOI: 10.1038/nmat3826

Local lattice distortions in La 1 x Sr x MnO 3 studied by pulsed neutron scattering
journal, March 1999


Bulk nanostructured thermoelectric materials: current research and future prospects
journal, January 2009

  • Minnich, A. J.; Dresselhaus, M. S.; Ren, Z. F.
  • Energy & Environmental Science, Vol. 2, Issue 5
  • DOI: 10.1039/b822664b

Phonon line shapes and excitation energies
journal, June 1997


Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
journal, April 2014

  • Zhao, Li-Dong; Lo, Shih-Han; Zhang, Yongsheng
  • Nature, Vol. 508, Issue 7496, p. 373-377
  • DOI: 10.1038/nature13184

Dynamics of ions of the two-dimensional superionic conductor AgCr S 2
journal, April 1983


First-principles calculations of the ferroelastic transition between rutile-type and CaCl 2 -type SiO 2 at high pressures
journal, October 2008


Copper ion liquid-like thermoelectrics
journal, March 2012

  • Liu, Huili; Shi, Xun; Xu, Fangfang
  • Nature Materials, Vol. 11, Issue 5, p. 422-425
  • DOI: 10.1038/nmat3273

Lattice properties of Pb X ( X = S , Se , Te ) : Experimental studies and ab initio calculations including spin-orbit effects
journal, December 2008


Thermal Barrier Coatings for Gas-Turbine Engine Applications
journal, April 2002


First Demonstration of Novel Method for Inelastic Neutron Scattering Measurement Utilizing Multiple Incident Energies
journal, September 2009

  • Nakamura, Mitsutaka; Kajimoto, Ryoichi; Inamura, Yasuhiro
  • Journal of the Physical Society of Japan, Vol. 78, Issue 9
  • DOI: 10.1143/JPSJ.78.093002

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.