skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Correlation matrix renormalization theory for correlated-electron materials with application to the crystalline phases of atomic hydrogen

Authors:
 [1];  [2];  [1];  [1];  [1]
  1. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy
  2. Ames Lab. and Iowa State Univ., Ames, IA (United States). Dept. of Physics and Astronomy; Univ. of Virginia, Charlottesville, VA (United States). Dept. of Physics
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Energy Research Scientific Computing Center (NERSC); USDOE
OSTI Identifier:
1422467
Alternate Identifier(s):
OSTI ID: 1422456; OSTI ID: 1427729
Report Number(s):
IS-J-9602
Journal ID: ISSN 2469-9950; PRBMDO; TRN: US1801604
Grant/Contract Number:  
AC02-07CH11358
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 7; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Zhao, Xin, Liu, Jun, Yao, Yong-Xin, Wang, Cai-Zhuang, and Ho, Kai-Ming. Correlation matrix renormalization theory for correlated-electron materials with application to the crystalline phases of atomic hydrogen. United States: N. p., 2018. Web. doi:10.1103/PhysRevB.97.075142.
Zhao, Xin, Liu, Jun, Yao, Yong-Xin, Wang, Cai-Zhuang, & Ho, Kai-Ming. Correlation matrix renormalization theory for correlated-electron materials with application to the crystalline phases of atomic hydrogen. United States. https://doi.org/10.1103/PhysRevB.97.075142
Zhao, Xin, Liu, Jun, Yao, Yong-Xin, Wang, Cai-Zhuang, and Ho, Kai-Ming. 2018. "Correlation matrix renormalization theory for correlated-electron materials with application to the crystalline phases of atomic hydrogen". United States. https://doi.org/10.1103/PhysRevB.97.075142. https://www.osti.gov/servlets/purl/1422467.
@article{osti_1422467,
title = {Correlation matrix renormalization theory for correlated-electron materials with application to the crystalline phases of atomic hydrogen},
author = {Zhao, Xin and Liu, Jun and Yao, Yong-Xin and Wang, Cai-Zhuang and Ho, Kai-Ming},
abstractNote = {},
doi = {10.1103/PhysRevB.97.075142},
url = {https://www.osti.gov/biblio/1422467}, journal = {Physical Review B},
issn = {2469-9950},
number = 7,
volume = 97,
place = {United States},
year = {Tue Jan 23 00:00:00 EST 2018},
month = {Tue Jan 23 00:00:00 EST 2018}
}

Journal Article:

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1 : Equation of state of the one dimensional hydrogen chain calculated from different methods as indicated.

Save / Share:

Works referenced in this record:

Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures
journal, July 2015


Metallic Hydrogen: A High-Temperature Superconductor?
journal, December 1968


Physicists doubt bold report of metallic hydrogen
journal, February 2017


New Functional Integral Approach to Strongly Correlated Fermi Systems: The Gutzwiller Approximation as a Saddle Point
journal, September 1986


Structure of phase III of solid hydrogen
journal, May 2007


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Evidence for a new phase of dense hydrogen above 325 gigapascals
journal, January 2016


Quantum Mechanics of Many-Electron Systems
journal, April 1929


Mott physics beyond the Brinkman-Rice scenario
journal, April 2017


LDA + Gutzwiller method for correlated electron systems
journal, July 2008


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ground-State Structures of Atomic Metallic Hydrogen
journal, April 2011


Strong electronic correlation in the hydrogen chain: A variational Monte Carlo study
journal, December 2011


Band theory and Mott insulators: Hubbard U instead of Stoner I
journal, July 1991


Highly localized quasiatomic minimal basis orbitals for Mo from ab initio calculations
journal, November 2007


Emergent Bloch excitations in Mott matter
journal, November 2017


High-resolution X-ray luminescence extension imaging
journal, February 2021


Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
journal, January 1996


Correlation Matrix Renormalization Theory: Improving Accuracy with Two-Electron Density-Matrix Sum Rules
journal, September 2016


Multiband Gutzwiller wave functions for general on-site interactions
journal, March 1998


Equivalence of Gutzwiller and slave-boson mean-field theories for multiband Hubbard models
journal, November 2007


Electronic structure calculations with dynamical mean-field theory
journal, August 2006


Observation of the Wigner-Huntington transition to metallic hydrogen
journal, January 2017


Correlated electrons in δ-plutonium within a dynamical mean-field picture
journal, April 2001


Strong electronic correlation in the Hydrogen chain: a variational Monte Carlo study
text, January 2011


Structure and bandgap closure in dense hydrogen
journal, February 2000


Conductive dense hydrogen
journal, November 2011


Works referencing / citing this record:

Benchmark of correlation matrix renormalization method in molecule calculations
journal, March 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.