skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine- N, N', N", N"-tetraacetic acid

Abstract

The novel metal ion complexant N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid (DTTA-BuA) uses an amide functionalization to increase the total ligand acidity and attain efficient 4f/5f differentiation in low pH conditions. The amide, when located on the diethylenetriamine platform containing four acetate pendant arms maintains the octadentate coordination sphere for all investigated trivalent f-elements. This compact coordination environment inhibits the protonation of LnL- complexes, as indicated by lower K 111 constants relative to the corresponding protonation site of the free ligand. For actinide ions, the enhanced stability of AnL- lowers the K 111 for americium and curium beyond the aptitude of potentiometric detection. Density functional theory computations indicate the difference in the back-donation ability of Am 3+ and Eu 3+ f-orbitals is mainly responsible for stronger proton affinity of EuL- compared to AmL-. The measured stability constants for the formation of AmL- and CmL- complexes are consistently higher, relative to ML- complexes with lanthanides of similar charge density. When compared with the conventional aminopolycarboxylate diethylenetriamine pentaacetic acid (DTPA), the modified DTTA-BuA complexant features higher ligand acidity and the important An 3+/Ln 3+ differentiation when deployed on a liquid–liquid distribution platform.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States). Aqueous Separations and Radiochemistry Dept.
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1427624
DOE Contract Number:  
AC05-00OR22725; AC07-05ID14517; AC02-05CH11231
Resource Type:
Journal Article
Resource Relation:
Journal Name: Dalton Transactions; Journal Volume: 47; Journal Issue: 4
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Heathman, Colt R., Grimes, Travis S., Jansone-Popova, Santa, Ivanov, Alexander S., Bryantsev, Vyacheslav S., and Zalupski, Peter R.. Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid. United States: N. p., 2017. Web. doi:10.1039/c7dt04104g.
Heathman, Colt R., Grimes, Travis S., Jansone-Popova, Santa, Ivanov, Alexander S., Bryantsev, Vyacheslav S., & Zalupski, Peter R.. Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid. United States. doi:10.1039/c7dt04104g.
Heathman, Colt R., Grimes, Travis S., Jansone-Popova, Santa, Ivanov, Alexander S., Bryantsev, Vyacheslav S., and Zalupski, Peter R.. Thu . "Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid". United States. doi:10.1039/c7dt04104g.
@article{osti_1427624,
title = {Synthesis and characterization of a novel aminopolycarboxylate complexant for efficient trivalent f-element differentiation: N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid},
author = {Heathman, Colt R. and Grimes, Travis S. and Jansone-Popova, Santa and Ivanov, Alexander S. and Bryantsev, Vyacheslav S. and Zalupski, Peter R.},
abstractNote = {The novel metal ion complexant N-butyl-2-acetamide-diethylenetriamine-N,N',N",N"-tetraacetic acid (DTTA-BuA) uses an amide functionalization to increase the total ligand acidity and attain efficient 4f/5f differentiation in low pH conditions. The amide, when located on the diethylenetriamine platform containing four acetate pendant arms maintains the octadentate coordination sphere for all investigated trivalent f-elements. This compact coordination environment inhibits the protonation of LnL- complexes, as indicated by lower K111 constants relative to the corresponding protonation site of the free ligand. For actinide ions, the enhanced stability of AnL- lowers the K111 for americium and curium beyond the aptitude of potentiometric detection. Density functional theory computations indicate the difference in the back-donation ability of Am3+ and Eu3+ f-orbitals is mainly responsible for stronger proton affinity of EuL- compared to AmL-. The measured stability constants for the formation of AmL- and CmL- complexes are consistently higher, relative to ML- complexes with lanthanides of similar charge density. When compared with the conventional aminopolycarboxylate diethylenetriamine pentaacetic acid (DTPA), the modified DTTA-BuA complexant features higher ligand acidity and the important An3+/Ln3+ differentiation when deployed on a liquid–liquid distribution platform.},
doi = {10.1039/c7dt04104g},
journal = {Dalton Transactions},
number = 4,
volume = 47,
place = {United States},
year = {Thu Dec 14 00:00:00 EST 2017},
month = {Thu Dec 14 00:00:00 EST 2017}
}