skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates

Abstract

Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 10 18, 4 × 10 19, and 2 × 10 20 n/cm 2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 10 19 n/cm 2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 10 20 n/cm 2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Ramanmore » spectroscopic studies.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Nuclear Security and Isotope Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Bredesen Center for Interdisciplinary Research and Graduate Education
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1426569
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 57; Journal Issue: 6; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Silva, Chinthaka M., Rosseel, Thomas M., and Kirkegaard, Marie C. Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates. United States: N. p., 2018. Web. doi:10.1021/acs.inorgchem.8b00096.
Silva, Chinthaka M., Rosseel, Thomas M., & Kirkegaard, Marie C. Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates. United States. doi:10.1021/acs.inorgchem.8b00096.
Silva, Chinthaka M., Rosseel, Thomas M., and Kirkegaard, Marie C. Wed . "Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates". United States. doi:10.1021/acs.inorgchem.8b00096.
@article{osti_1426569,
title = {Radiation-Induced Changes in Quartz, A Mineral Analog of Nuclear Power Plant Concrete Aggregates},
author = {Silva, Chinthaka M. and Rosseel, Thomas M. and Kirkegaard, Marie C.},
abstractNote = {Quartz single-crystal samples consisting of α-quartz crystal structure were neutron irradiated to fluences of 5 × 1018, 4 × 1019, and 2 × 1020 n/cm2 (E > 0.1 MeV) at two temperatures (52 and 95 °C). The changes in the α-quartz phase as a function of these two conditions (temperature and fluence) were studied using X-ray powder diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM), and the results acquired using these complementary techniques are presented in a single place for the first time. XRD studies showed that the lattice parameters of α-quartz increased with increasing neutron flux. The lattice growth was larger for the samples that were neutron irradiated at 52 °C than at 95 °C. Moreover, an amorphous content was determined in the quartz samples neutron irradiated at 4 × 1019 n/cm2, with the greater amount being in the 52 °C irradiated sample. Complete amorphization of quartz was observed at a fluence of 2 × 1020 n/cm2 (E > 0.1 MeV) using XRD and confirmed by TEM characterization and Raman spectroscopic studies. In conclusion, the cause for α-quartz lattice expansion and sample amorphization was also explored using XRD and Raman spectroscopic studies.},
doi = {10.1021/acs.inorgchem.8b00096},
journal = {Inorganic Chemistry},
number = 6,
volume = 57,
place = {United States},
year = {Wed Mar 07 00:00:00 EST 2018},
month = {Wed Mar 07 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 7, 2019
Publisher's Version of Record

Save / Share: