skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fluorine substituted (Mn,Ir)O 2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis

Abstract

Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoretical calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15more » fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less

Authors:
 [1];  [1];  [2];  [2];  [3];  [1]; ORCiD logo [4]
  1. Univ. of Pittsburgh, PA (United States). Chemical and Petroleum Engineering, Swanson School of Engineering
  2. Univ. of Pittsburgh, PA (United States). Swanson School of Engineering, Dept. of Bioengineering; Univ. of Pittsburgh, PA (United States). Center for Complex Engineered Multifunctional Materials
  3. Univ. of Pittsburgh, PA (United States). Swanson School of Engineering, Dept. of Bioengineering
  4. Univ. of Pittsburgh, PA (United States). Chemical and Petroleum Engineering, Swanson School of Engineering; Univ. of Pittsburgh, PA (United States). Swanson School of Engineering, Dept. of Bioengineering; Univ. of Pittsburgh, PA (United States). Center for Complex Engineered Multifunctional Materials; Univ. of Pittsburgh, PA (United States). Mechanical Engineering and Materials Science; Univ. of Pittsburgh, PA (United States). School of Dental Medicine
Publication Date:
Research Org.:
Univ. of Pittsburgh, PA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1426497
Grant/Contract Number:
SC0001531
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
RSC Advances
Additional Journal Information:
Journal Volume: 7; Journal Issue: 28; Journal ID: ISSN 2046-2069
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
08 HYDROGEN

Citation Formats

Ghadge, Shrinath Dattatray, Patel, Prasad Prakash, Datta, Moni Kanchan, Velikokhatnyi, Oleg I., Kuruba, Ramalinga, Shanthi, Pavithra M., and Kumta, Prashant N. Fluorine substituted (Mn,Ir)O2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis. United States: N. p., 2017. Web. doi:10.1039/c6ra27354h.
Ghadge, Shrinath Dattatray, Patel, Prasad Prakash, Datta, Moni Kanchan, Velikokhatnyi, Oleg I., Kuruba, Ramalinga, Shanthi, Pavithra M., & Kumta, Prashant N. Fluorine substituted (Mn,Ir)O2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis. United States. doi:10.1039/c6ra27354h.
Ghadge, Shrinath Dattatray, Patel, Prasad Prakash, Datta, Moni Kanchan, Velikokhatnyi, Oleg I., Kuruba, Ramalinga, Shanthi, Pavithra M., and Kumta, Prashant N. Mon . "Fluorine substituted (Mn,Ir)O2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis". United States. doi:10.1039/c6ra27354h. https://www.osti.gov/servlets/purl/1426497.
@article{osti_1426497,
title = {Fluorine substituted (Mn,Ir)O2:F high performance solid solution oxygen evolution reaction electro-catalysts for PEM water electrolysis},
author = {Ghadge, Shrinath Dattatray and Patel, Prasad Prakash and Datta, Moni Kanchan and Velikokhatnyi, Oleg I. and Kuruba, Ramalinga and Shanthi, Pavithra M. and Kumta, Prashant N.},
abstractNote = {Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO2, RuO2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoretical calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO2 and IrO2, denoted as (Mn1-xIrx)O2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn1-xIrx)O2:F system as an OER electro-catalyst for PEM water electrolysis.},
doi = {10.1039/c6ra27354h},
journal = {RSC Advances},
number = 28,
volume = 7,
place = {United States},
year = {Mon Mar 20 00:00:00 EDT 2017},
month = {Mon Mar 20 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Identification and development of non-noble metal based electro-catalysts or electro-catalysts comprising compositions with significantly reduced amounts of expensive noble metal contents (e.g. IrO{sub 2}, Pt) with comparable electrochemical performance to the standard noble metal/metal oxide for proton exchange membrane (PEM) based water electrolysis would signify a major breakthrough in hydrogen generation via water electrolysis. Development of such systems would lead to two primary outcomes: first, a reduction in the overall capital costs of PEM based water electrolyzers, and second, attainment of the targeted hydrogen production costs (<$3.00/gge delivered by 2015) comparable to conventional liquid fuels. In line with these goals,more » by exploiting a two-pronged theoretical first principles and experimental approach herein, we demonstrate for the very first time a solid solution of SnO{sub 2}:10 wt% F containing only 20 at.% IrO{sub 2} [e.g. (Sn{sub 0.80}Ir{sub 0.20})O{sub 2}:10F] displaying remarkably similar electrochemical activity and comparable or even much improved electrochemical durability compared to pure IrO{sub 2}, the accepted gold standard in oxygen evolution electro-catalysts for PEM based water electrolysis. We present the results of these studies.« less
  • Photosynthetic water oxidation is thought to occur at a polynuclear manganese aggregate within the photosystem II oxygen-evolving complex (PSII OEC). While X-ray absorption studies have established that Mn{hor ellipsis}Mn contacts of 2.7 and 3.3 {angstrom} are present in the OEC, the precise structure of the manganese aggregate has not been established. We are currently taking a synthetic analogue approach in order to elucidate this important biological process. Herein, we describe a novel tetranuclear complex. (Mn{sub 4}O{sub 2}(TPHPN){sub 2}(H{sub 2}O){sub 2}(CF{sub 3}SO{sub 3}){sub 2}){sup 3+} (1), which meets several important criteria for a synthetic analogue of the OEC manganese center inmore » that it has a 2.7-{angstrom} Mn{hor ellipsis}Mn contact, coordinated H{sub 2}O molecules, and quasi-reversible electrochemical properties.« less
  • SrTi 0.3 Fe 0.7−x Co x O 3−δ oxygen electrodes provide a unique combination of low polarization resistance and stability useful for solid oxide electrochemical cells.
  • Crystals of Sr{sub 4−x}Ln{sub x}Mn{sub 3}O{sub 3}(GeO{sub 4}){sub 3} (x=0; x∼0.15 for Ln=La, Pr, Nd, Sm. Eu, Gd, Dy; x∼0.3 for Ln=Gd) were isolated upon using high-temperature, solid-state methods in molten-salt media. These compounds are isostructural with the previously reported Na{sub 3}LnMn{sub 3}O{sub 3}(AsO{sub 4}){sub 3} (Ln=La, Sm, Gd) series that contains the same [MnO{sub 4}]{sub ∞} spin chains. The synthesis of the Sr{sub 4}Mn{sub 3}O{sub 3}(GeO{sub 4}){sub 3} (x=0) phase was carried out by a double aliovalent substitution with respect to the Sr{sup 2+} and Ge{sup 4+} ions that replace Na{sup +}/Ln{sup 3+} and As{sup 5+} in Na{sub 3}LnMn{submore » 3}O{sub 3}(AsO{sub 4}){sub 3}, respectively. The title series contains mixed-valent Mn(III)/Mn(IV) and shows a limited range of solid solution, both of which were not observed in the previously reported Na{sub 3}LnMn{sub 3}O{sub 3}(AsO{sub 4}){sub 3} series. To form the Sr{sub 4−x}Ln{sub x}Mn{sub 3}O{sub 3}(GeO{sub 4}){sub 3} solid solution, one of the Sr{sup 2+} sites, i.e., the original Ln-site in Na{sub 3}LnMn{sub 3}O{sub 3}(AsO{sub 4}){sub 3}, is partially substituted by Ln{sup 3+} in a statistical disorder of Sr{sub 1−x}/Ln{sub x}. Initial magnetic investigations of selected derivatives reveal higher ferromagnetic ordering temperatures than those reported for the Na{sub 3}LnMn{sub 3}O{sub 3}(AsO{sub 4}){sub 3} series, presumably attributed to a lesser degree of canting as a result of introducing non-Jahn–Teller Mn{sup 4+} ions. Also intriguing is the observation of multiple anomalies at low temperatures which appear to be of electronic origins. - Graphical abstract: Sr{sub 4−x}Ln{sub x}Mn(III){sub 2+x}Mn(IV){sub 1−x}O{sub 3}(GeO{sub 4}){sub 3}. Display Omitted - Highlights: • Double aliovalent substitution: Sr{sub 4}Mn{sub 3}O{sub 3}(GeO{sub 4}){sub 3} with respect to Na{sub 3}LnMn{sub 3}O{sub 3}(AsO{sub 4}){sub 3}. • Solid solution with respect to statistical disorder of Sr{sub 1−x}Ln{sub x} in one of the two Sr sites. • Mn{sup 3+}/Mn{sup 4+} magnetic ions are spatially arranged in a triangular kagomé fashion. • Enhanced ferromagnetic ordering attributed to doping non-Jahn–Teller Mn{sup 4+}.« less