skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Learning free energy landscapes using artificial neural networks

Authors:
 [1]; ORCiD logo [1]
  1. Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1425538
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 148; Journal Issue: 10; Related Information: CHORUS Timestamp: 2018-03-12 12:13:08; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Sidky, Hythem, and Whitmer, Jonathan K. Learning free energy landscapes using artificial neural networks. United States: N. p., 2018. Web. doi:10.1063/1.5018708.
Sidky, Hythem, & Whitmer, Jonathan K. Learning free energy landscapes using artificial neural networks. United States. doi:10.1063/1.5018708.
Sidky, Hythem, and Whitmer, Jonathan K. Wed . "Learning free energy landscapes using artificial neural networks". United States. doi:10.1063/1.5018708.
@article{osti_1425538,
title = {Learning free energy landscapes using artificial neural networks},
author = {Sidky, Hythem and Whitmer, Jonathan K.},
abstractNote = {},
doi = {10.1063/1.5018708},
journal = {Journal of Chemical Physics},
number = 10,
volume = 148,
place = {United States},
year = {Wed Mar 14 00:00:00 EDT 2018},
month = {Wed Mar 14 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on March 12, 2019
Publisher's Accepted Manuscript

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share: