skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum

Abstract

We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment ofmore » the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less

Authors:
 [1];  [2]; ORCiD logo [2];  [1]
  1. Chiba Univ. (Japan)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1425020
Alternate Identifier(s):
OSTI ID: 1418077
Report Number(s):
BNL-200000-2018-JAAM
Journal ID: ISSN 0021-9606; TRN: US1802003
Grant/Contract Number:  
SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 148; Journal Issue: 19; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ionic; liquids

Citation Formats

Kakinuma, Shohei, Ramati, Sharon, Wishart, James F., and Shirota, Hideaki. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum. United States: N. p., 2018. Web. doi:10.1063/1.5010066.
Kakinuma, Shohei, Ramati, Sharon, Wishart, James F., & Shirota, Hideaki. Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum. United States. doi:10.1063/1.5010066.
Kakinuma, Shohei, Ramati, Sharon, Wishart, James F., and Shirota, Hideaki. Mon . "Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum". United States. doi:10.1063/1.5010066.
@article{osti_1425020,
title = {Effects of aromaticity in cations and their functional groups on the temperature dependence of low-frequency spectrum},
author = {Kakinuma, Shohei and Ramati, Sharon and Wishart, James F. and Shirota, Hideaki},
abstractNote = {We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm-1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr]+, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm]+, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr]+, 1-benzyl-3-methylimidazolium [BzMIm]+, and N-benzylpyridinium [BzPy]+ cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but the temperature-dependent spectrum of [CHxmMPyrr][NTf2] is different from that of other ILs. While [CHxmMPyrr][NTf2] shows spectral changes with temperature in the low-frequency region below 50 cm-1, the other ILs also show spectral changes in the high-frequency region above 80 cm-1 (above 50 cm-1 in the case of [BzMPyrr][NTf2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.},
doi = {10.1063/1.5010066},
journal = {Journal of Chemical Physics},
number = 19,
volume = 148,
place = {United States},
year = {Mon May 21 00:00:00 EDT 2018},
month = {Mon May 21 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 21, 2019
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: