skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase transformation pathways of ultrafast-laser-irradiated Ln 2 O 3 ( Ln = Er Lu )

Abstract

Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln 2O 3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.

Authors:
 [1];  [1];  [1];  [2];  [2];  [3];  [4];  [1]
  1. Stanford Univ., CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
  3. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  4. Univ. of Michigan, Ann Arbor, MI (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Energy Frontier Research Centers (EFRC) (United States). Materials Science of Actinides (MSA)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1424744
Alternate Identifier(s):
OSTI ID: 1416424
Grant/Contract Number:  
SC0001089; AC02-76SF00515; AC02-05CH11231; FA9550-16-1-0312; ECCS-1542152
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 97; Journal Issue: 2; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Rittman, Dylan R., Tracy, Cameron L., Chen, Chien-Hung, Solomon, Jonathan M., Asta, Mark, Mao, Wendy L., Yalisove, Steven M., and Ewing, Rodney C. Phase transformation pathways of ultrafast-laser-irradiated Ln2O3(Ln=Er–Lu). United States: N. p., 2018. Web. doi:10.1103/physrevb.97.024104.
Rittman, Dylan R., Tracy, Cameron L., Chen, Chien-Hung, Solomon, Jonathan M., Asta, Mark, Mao, Wendy L., Yalisove, Steven M., & Ewing, Rodney C. Phase transformation pathways of ultrafast-laser-irradiated Ln2O3(Ln=Er–Lu). United States. doi:10.1103/physrevb.97.024104.
Rittman, Dylan R., Tracy, Cameron L., Chen, Chien-Hung, Solomon, Jonathan M., Asta, Mark, Mao, Wendy L., Yalisove, Steven M., and Ewing, Rodney C. Wed . "Phase transformation pathways of ultrafast-laser-irradiated Ln2O3(Ln=Er–Lu)". United States. doi:10.1103/physrevb.97.024104. https://www.osti.gov/servlets/purl/1424744.
@article{osti_1424744,
title = {Phase transformation pathways of ultrafast-laser-irradiated Ln2O3(Ln=Er–Lu)},
author = {Rittman, Dylan R. and Tracy, Cameron L. and Chen, Chien-Hung and Solomon, Jonathan M. and Asta, Mark and Mao, Wendy L. and Yalisove, Steven M. and Ewing, Rodney C.},
abstractNote = {Ultrafast laser irradiation causes intense electronic excitations in materials, leading to transient high temperatures and pressures. Here, we show that ultrafast laser irradiation drives an irreversible cubic-to-monoclinic phase transformation in Ln2O3 ( Ln = Er – Lu ) , and explore the mechanism by which the phase transformation occurs. A combination of grazing incidence x-ray diffraction and transmission electron microscopy are used to determine the magnitude and depth-dependence of the phase transformation, respectively. Although all compositions undergo the same transformation, their transformation mechanisms differ. The transformation is pressure-driven for Ln = Tm – Lu , consistent with the material's phase behavior under equilibrium conditions. However, the transformation is thermally driven for Ln = Er , revealing that the nonequilibrium conditions of ultrafast laser irradiation can lead to novel transformation pathways. Ab initio molecular-dynamics simulations are used to examine the atomic-scale effects of electronic excitation, showing the production of oxygen Frenkel pairs and the migration of interstitial oxygen to tetrahedrally coordinated constitutional vacancy sites, the first step in a defect-driven phase transformation.},
doi = {10.1103/physrevb.97.024104},
journal = {Physical Review B},
issn = {2469-9950},
number = 2,
volume = 97,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: High-temperature (top) and high-pressure (bottom) phase diagrams of Ln2O3 materials. Phases are: A type (trigonal P − $3m1$) , B type (monoclinic C2/$m$), C type (face-centered cubic $Ia − 3$) , H type (hexagonal P6 3 / m m c ) , and X type (body-centered cubic Im-3m).more » Dashed lines represent approximate phase boundaries. The high-temperature phase diagram is adapted from Ref. [17]. The high-pressure phase diagram is constructed using data from Refs. [18-28].« less

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Ab initio Molecular Dynamics Simulation of Laser Melting of Silicon
journal, October 1996

  • Silvestrelli, Pier Luigi; Alavi, Ali; Parrinello, Michele
  • Physical Review Letters, Vol. 77, Issue 15
  • DOI: 10.1103/PhysRevLett.77.3149

Timescales in the response of materials to femtosecond laser excitation
journal, September 2004

  • Rethfeld, B.; Sokolowski-Tinten, K.; von der Linde, D.
  • Applied Physics A, Vol. 79, Issue 4-6
  • DOI: 10.1007/s00339-004-2805-9

Projector augmented-wave method
journal, December 1994


Nanodot formation induced by femtosecond laser irradiation
journal, October 2014

  • Abere, M. J.; Chen, C.; Rittman, D. R.
  • Applied Physics Letters, Vol. 105, Issue 16
  • DOI: 10.1063/1.4899066

Formation of High-Density Dislocations and Hardening in Femtosecond-Laser-Shocked Silicon
journal, February 2012

  • Tsujino, Masashi; Sano, Tomokazu; Ogura, Tomo
  • Applied Physics Express, Vol. 5, Issue 2
  • DOI: 10.1143/APEX.5.022703

Phase transformation in Sm2O3 at high pressure: In situ synchrotron X-ray diffraction study and ab initio DFT calculation
journal, February 2008


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Intrinsic defect processes in bixbyite sesquioxides
journal, March 2007

  • Chroneos, A.; Levy, M. R.; Stanek, C. R.
  • physica status solidi (c), Vol. 4, Issue 3
  • DOI: 10.1002/pssc.200673829

Phase transformations in Ln 2 O 3 materials irradiated with swift heavy ions
journal, November 2015


Evidence of extended defects in pure zirconia irradiated by swift heavy ions
journal, October 2006


Phase transformation of Ho 2 O 3 at high pressure
journal, July 2011

  • Jiang, Sheng; Liu, Jing; Li, Xiaodong
  • Journal of Applied Physics, Vol. 110, Issue 1
  • DOI: 10.1063/1.3603027

Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum
journal, October 1996


Electronic properties of lanthanide oxides from the G W perspective
journal, September 2012


Non-thermal melting in semiconductors measured at femtosecond resolution
journal, March 2001

  • Rousse, A.; Rischel, C.; Fourmaux, S.
  • Nature, Vol. 410, Issue 6824
  • DOI: 10.1038/35065045

Laser–solid interaction in the femtosecond time regime
journal, February 1997


DIOPTAS : a program for reduction of two-dimensional X-ray diffraction data and data exploration
journal, May 2015


Evidence of superdense aluminium synthesized by ultrafast microexplosion
journal, August 2011

  • Vailionis, Arturas; Gamaly, Eugene G.; Mizeikis, Vygantas
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1449

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Ultrafast laser and swift heavy ion irradiation: Response of Gd 2 O 3 and ZrO 2 to intense electronic excitation
journal, April 2015

  • Rittman, Dylan R.; Tracy, Cameron L.; Cusick, Alex B.
  • Applied Physics Letters, Vol. 106, Issue 17
  • DOI: 10.1063/1.4919720

Pressure-induced phase transition in cubic Lu2O3
journal, October 2010

  • Jiang, Sheng; Liu, Jing; Lin, Chuanlong
  • Journal of Applied Physics, Vol. 108, Issue 8
  • DOI: 10.1063/1.3499301

Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma
journal, October 1990


Femtosecond laser micromachining of a single-crystal superalloy
journal, September 2005


Systematics of the phase behavior in lanthanide sesquioxides
journal, August 1992


Effect of Intense Laser Irradiation on the Lattice Stability of Semiconductors and Metals
journal, February 2006


Pressure-induced phase transformations during femtosecond-laser doping of silicon
journal, September 2011

  • Smith, Matthew J.; Lin, Yu-Ting; Sher, Meng-Ju
  • Journal of Applied Physics, Vol. 110, Issue 5
  • DOI: 10.1063/1.3633528

Fractional Diffusion in Silicon
journal, August 2013

  • Zijlstra, Eeuwe S.; Kalitsov, Alan; Zier, Tobias
  • Advanced Materials, Vol. 25, Issue 39
  • DOI: 10.1002/adma201302559

Anharmonic Noninertial Lattice Dynamics during Ultrafast Nonthermal Melting of InSb
journal, September 2008


Experimental evidence of new tetragonal polymorphs of silicon formed through ultrafast laser-induced confined microexplosion
journal, June 2015

  • Rapp, L.; Haberl, B.; Pickard, C. J.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8555

Atomic-Scale Visualization of Inertial Dynamics
journal, April 2005


Response of GaAs to fast intense laser pulses
journal, November 1998


Pressure-Induced Cubic to Monoclinic Phase Transformation in Erbium Sesquioxide Er 2 O 3
journal, July 2007

  • Guo, Qixun; Zhao, Yusheng; Jiang, Chao
  • Inorganic Chemistry, Vol. 46, Issue 15
  • DOI: 10.1021/ic070154g

Multi-material two-temperature model for simulation of ultra-short laser ablation
journal, May 2007

  • Povarnitsyn, Mikhail E.; Itina, Tatiana E.; Khishchenko, Konstantin V.
  • Applied Surface Science, Vol. 253, Issue 15
  • DOI: 10.1016/j.apsusc.2007.01.103

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Measurement of transit time for femtosecond-laser-driven shock wave through aluminium films by ultrafast microscopy
journal, January 2009


Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation
journal, September 2004


High pressure phase transition in Nd 2 O 3
journal, July 2012


Comparison of the high-pressure behavior of the cerium oxides C e 2 O 3 and Ce O 2
journal, February 2016


Femtosecond laser-induced periodic surface structures
journal, September 2012

  • Bonse, J.; Krüger, J.; Höhm, S.
  • Journal of Laser Applications, Vol. 24, Issue 4
  • DOI: 10.2351/1.4712658

Periodic surface structure bifurcation induced by ultrafast laser generated point defect diffusion in GaAs
journal, April 2016

  • Abere, Michael J.; Torralva, Ben; Yalisove, Steven M.
  • Applied Physics Letters, Vol. 108, Issue 15
  • DOI: 10.1063/1.4946861

Structural phase transitions of cubic Gd 2 O 3 at high pressures
journal, August 2008


Hydrodynamic simulations of metal ablation by femtosecond laser irradiation
journal, April 2005


Dynamical theory of the laser-induced lattice instability of silicon
journal, November 1992


High-resolution observations of an amorphous layer and subsurface damage formed by femtosecond laser irradiation of silicon
journal, March 2008

  • Crawford, T. H. R.; Yamanaka, J.; Botton, G. A.
  • Journal of Applied Physics, Vol. 103, Issue 5
  • DOI: 10.1063/1.2885111

Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses
journal, December 2002

  • Sundaram, S. K.; Mazur, E.
  • Nature Materials, Vol. 1, Issue 4
  • DOI: 10.1038/nmat767

Structural transformations in cubic Dy2O3 at high pressures
journal, September 2013


Femtosecond laser machining of single-crystal superalloys through thermal barrier coatings
journal, August 2006

  • Feng, Q.; Picard, Y. N.; McDonald, J. P.
  • Materials Science and Engineering: A, Vol. 430, Issue 1-2
  • DOI: 10.1016/j.msea.2006.05.104

Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy
journal, May 2002

  • Le Harzic, R.; Huot, N.; Audouard, E.
  • Applied Physics Letters, Vol. 80, Issue 21
  • DOI: 10.1063/1.1481195

The Phase Transition of Eu 2 O 3 under High Pressures
journal, July 2009


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.