skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)

Abstract

Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [2]; ORCiD logo [3]; ORCiD logo [2];  [4];  [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland)
  2. Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Physics, Applied Physics, and Astronomy
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences
  4. Technische Univ. Dresden (Germany). Chair of Molecular Functional Materials. Dept. of Chemistry and Food Chemistry
  5. Max Planck Inst. for Polymer Research, Mainz (Germany)
  6. Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland); Univ. of Bern (Switzerland). Dept. of Chemistry and Biochemistry
Publication Date:
Research Org.:
Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; Office of Naval Research (ONR) (United States); Swiss National Science Foundation (SNSF); European Commission (EC); Ministry of Economy, Industry and Competitiveness (Spain); European Investment Bank (EIB)
OSTI Identifier:
1423064
Grant/Contract Number:  
AC05-00OR22725; N00014-12-1-1009; CNECT-ICT-604391; IJCI-2014-19291
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 54; Journal Issue: 13; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., and Ruffieux, P. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). United States: N. p., 2018. Web. doi:10.1039/C7CC08353J.
Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., & Ruffieux, P. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). United States. doi:10.1039/C7CC08353J.
Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., and Ruffieux, P. Mon . "Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)". United States. doi:10.1039/C7CC08353J. https://www.osti.gov/servlets/purl/1423064.
@article{osti_1423064,
title = {Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)},
author = {Deniz, O. and Sánchez-Sánchez, C. and Jaafar, R. and Kharche, N. and Liang, L. and Meunier, V. and Feng, X. and Müllen, K. and Fasel, R. and Ruffieux, P.},
abstractNote = {Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.},
doi = {10.1039/C7CC08353J},
journal = {ChemComm},
issn = {1359-7345},
number = 13,
volume = 54,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Chevron GNR on Au(111): (a) reaction steps for the on-surface synthesis of chevron GNRs, (b) STM image (scale bar: 10 nm, z-scale: 0.3–2.6 Å, U = −0.6 V, $I$ = 60 pA, 5 K) of chevron GNRs on Au(111), (c) averaged differential conductance spectrum ($U$ = −2 V,more » $I$ = 83 pA, 77 K) recorded on chevron GNR and differential conductance maps (scale bars: 1 nm, I = 83 pA, 77 K) recorded on chevron GNR segment at (d) 1 V and (e) at 1.85 V.« less

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Renormalization of Molecular Electronic Levels at Metal-Molecule Interfaces
journal, November 2006


On-surface synthesis of graphene nanoribbons with zigzag edge topology
journal, March 2016

  • Ruffieux, Pascal; Wang, Shiyong; Yang, Bo
  • Nature, Vol. 531, Issue 7595
  • DOI: 10.1038/nature17151

Projector augmented-wave method
journal, December 1994


On-Surface Synthesis of Atomically Precise Graphene Nanoribbons
journal, February 2016

  • Talirz, Leopold; Ruffieux, Pascal; Fasel, Roman
  • Advanced Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adma.201505738

Structural and electronic properties of graphitic nanowiggles
journal, June 2012


Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001)
journal, February 2012

  • Mao, Jinhai; Huang, Li; Pan, Yi
  • Applied Physics Letters, Vol. 100, Issue 9
  • DOI: 10.1063/1.3687190

Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
journal, June 2013

  • Chen, Yen-Chia; de Oteyza, Dimas G.; Pedramrazi, Zahra
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401948e

Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage
journal, February 2013

  • El-Kady, Maher F.; Kaner, Richard B.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2446

On-Surface Synthesis of Rylene-Type Graphene Nanoribbons
journal, March 2015

  • Zhang, Haiming; Lin, Haiping; Sun, Kewei
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/ja511995r

Emergence of Atypical Properties in Assembled Graphene Nanoribbons
journal, September 2011


Ultra-narrow metallic armchair graphene nanoribbons
journal, December 2015

  • Kimouche, Amina; Ervasti, Mikko M.; Drost, Robert
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10177

Aligning the Band Gap of Graphene Nanoribbons by Monomer Doping
journal, March 2013

  • Bronner, Christopher; Stremlau, Stephan; Gille, Marie
  • Angewandte Chemie International Edition, Vol. 52, Issue 16
  • DOI: 10.1002/anie.201209735

Substrate-Independent Growth of Atomically Precise Chiral Graphene Nanoribbons
journal, August 2016

  • de Oteyza, Dimas G.; García-Lekue, Aran; Vilas-Varela, Manuel
  • ACS Nano, Vol. 10, Issue 9
  • DOI: 10.1021/acsnano.6b05269

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Epitaxial growth of aligned atomically precise chevron graphene nanoribbons on Cu(111)
journal, January 2017

  • Teeter, Jacob D.; Costa, Paulo S.; Mehdi Pour, Mohammad
  • Chemical Communications, Vol. 53, Issue 60
  • DOI: 10.1039/C6CC08006E

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Graphene nanoribbon heterojunctions
journal, September 2014

  • Cai, Jinming; Pignedoli, Carlo A.; Talirz, Leopold
  • Nature Nanotechnology, Vol. 9, Issue 11
  • DOI: 10.1038/nnano.2014.184

Quasiparticle Energies and Band Gaps in Graphene Nanoribbons
journal, November 2007


Image potential states at chevron-shaped graphene nanoribbons /Au(111) interfaces
journal, January 2015


Enhanced thermoelectric figure of merit in assembled graphene nanoribbons
journal, September 2012


Electronic band dispersion of graphene nanoribbons via Fourier-transformed scanning tunneling spectroscopy
journal, January 2015


Linear optical properties in the projector-augmented wave methodology
journal, January 2006


Transfer-Free Electrical Insulation of Epitaxial Graphene from its Metal Substrate
journal, January 2012

  • Lizzit, Silvano; Larciprete, Rosanna; Lacovig, Paolo
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl301614j

Width and Crystal Orientation Dependent Band Gap Renormalization in Substrate-Supported Graphene Nanoribbons
journal, April 2016


Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons
journal, December 2012

  • Huang, Han; Wei, Dacheng; Sun, Jiatao
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00983

Electronic structure of assembled graphene nanoribbons: Substrate and many-body effects
journal, November 2012


Graphene: Electronic and Photonic Properties and Devices
journal, November 2010

  • Avouris, Phaedon
  • Nano Letters, Vol. 10, Issue 11, p. 4285-4294
  • DOI: 10.1021/nl102824h

Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions
journal, January 2015


Direct visualization of atomically precise nitrogen-doped graphene nanoribbons
journal, July 2014

  • Zhang, Yi; Zhang, Yanfang; Li, Geng
  • Applied Physics Letters, Vol. 105, Issue 2
  • DOI: 10.1063/1.4884359

Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor
journal, September 2017

  • Nguyen, Giang D.; Tsai, Hsin-Zon; Omrani, Arash A.
  • Nature Nanotechnology, Vol. 12, Issue 11
  • DOI: 10.1038/nnano.2017.155

The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100)
journal, December 2016


Electronic Structure of Atomically Precise Graphene Nanoribbons
journal, July 2012

  • Ruffieux, Pascal; Cai, Jinming; Plumb, Nicholas C.
  • ACS Nano, Vol. 6, Issue 8
  • DOI: 10.1021/nn3021376

Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy
journal, March 2017


On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons
journal, February 2017


Quasiparticle Energies and Optical Excitations in Chevron-Type Graphene Nanoribbon
journal, April 2012

  • Wang, Shudong; Wang, Jinlan
  • The Journal of Physical Chemistry C, Vol. 116, Issue 18
  • DOI: 10.1021/jp2125872

Toward Cove-Edged Low Band Gap Graphene Nanoribbons
journal, May 2015

  • Liu, Junzhi; Li, Bo-Wei; Tan, Yuan-Zhi
  • Journal of the American Chemical Society, Vol. 137, Issue 18
  • DOI: 10.1021/jacs.5b03017

Heterostructures through Divergent Edge Reconstruction in Nitrogen-Doped Segmented Graphene Nanoribbons
journal, August 2016

  • Marangoni, Tomas; Haberer, Danny; Rizzo, Daniel J.
  • Chemistry - A European Journal, Vol. 22, Issue 37
  • DOI: 10.1002/chem.201603497

Electronic Transport Properties of Assembled Carbon Nanoribbons
journal, June 2012

  • Girão, Eduardo Costa; Cruz-Silva, Eduardo; Meunier, Vincent
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn302259f

Nitrogen-Doping Induced Self-Assembly of Graphene Nanoribbon-Based Two-Dimensional and Three-Dimensional Metamaterials
journal, August 2015


Two-dimensional gas of massless Dirac fermions in graphene
journal, November 2005

  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.
  • Nature, Vol. 438, Issue 7065, p. 197-200
  • DOI: 10.1038/nature04233

    Figures / Tables found in this record:

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.