skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)

Abstract

Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [2]; ORCiD logo [3]; ORCiD logo [2];  [4];  [5]; ORCiD logo [6]; ORCiD logo [1]
  1. Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland)
  2. Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Physics, Applied Physics, and Astronomy
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences
  4. Technische Univ. Dresden (Germany). Chair of Molecular Functional Materials. Dept. of Chemistry and Food Chemistry
  5. Max Planck Inst. for Polymer Research, Mainz (Germany)
  6. Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland); Univ. of Bern (Switzerland). Dept. of Chemistry and Biochemistry
Publication Date:
Research Org.:
Swiss Federal Lab. for Materials Science and Technology (Empa), Dubendorf (Switzerland); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE; Office of Naval Research (ONR) (United States); Swiss National Science Foundation (SNSF); European Commission (EC); Ministry of Economy, Industry and Competitiveness (Spain); European Investment Bank (EIB)
OSTI Identifier:
1423064
Grant/Contract Number:
AC05-00OR22725; N00014-12-1-1009; CNECT-ICT-604391; IJCI-2014-19291
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ChemComm
Additional Journal Information:
Journal Volume: 54; Journal Issue: 13; Journal ID: ISSN 1359-7345
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., and Ruffieux, P. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). United States: N. p., 2018. Web. doi:10.1039/C7CC08353J.
Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., & Ruffieux, P. Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111). United States. doi:10.1039/C7CC08353J.
Deniz, O., Sánchez-Sánchez, C., Jaafar, R., Kharche, N., Liang, L., Meunier, V., Feng, X., Müllen, K., Fasel, R., and Ruffieux, P. Mon . "Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)". United States. doi:10.1039/C7CC08353J.
@article{osti_1423064,
title = {Electronic characterization of silicon intercalated chevron graphene nanoribbons on Au(111)},
author = {Deniz, O. and Sánchez-Sánchez, C. and Jaafar, R. and Kharche, N. and Liang, L. and Meunier, V. and Feng, X. and Müllen, K. and Fasel, R. and Ruffieux, P.},
abstractNote = {Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.},
doi = {10.1039/C7CC08353J},
journal = {ChemComm},
number = 13,
volume = 54,
place = {United States},
year = {Mon Jan 08 00:00:00 EST 2018},
month = {Mon Jan 08 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 8, 2019
Publisher's Version of Record

Save / Share: