skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: BAO from angular clustering: optimization and mitigation of theoretical systematics

Abstract

Here, we study the methodology and potential theoretical systematics of measuring Baryon Acoustic Oscillations (BAO) using the angular correlation functions in tomographic bins. We calibrate and optimize the pipeline for the Dark Energy Survey Year 1 dataset using 1800 mocks. We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The fit results from the MLE are the least biased and their derived 1-$$\sigma$$ error bar are closest to the Gaussian distribution value after removing the extreme mocks with non-detected BAO signal. We show that incorrect assumptions in constructing the template, such as mismatches from the cosmology of the mocks or the underlying photo-$z$ errors, can lead to BAO angular shifts. We find that MLE is the method that best traces this systematic biases, allowing to recover the true angular distance values. In a real survey analysis, it may happen that the final data sample properties are slightly different from those of the mock catalog. We show that the effect on the mock covariance due to the sample differences can be corrected with the help of the Gaussian covariance matrix or more effectively using the eigenmode expansion of the mock covariance. In the eigenmode expansion, the eigenmodes are provided by some proxy covariance matrix. The eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the direct measurements of the covariance matrix because of the number of free parameters is substantially reduced

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [12];  [6];  [13];  [14];  [15];  [16];  [2];  [17];  [18] more »;  [14];  [17];  [19];  [20];  [11];  [11];  [2];  [21];  [22];  [2];  [23];  [13];  [15];  [14];  [11];  [24];  [25];  [26];  [27];  [20];  [28];  [6];  [29];  [18];  [15];  [23];  [30];  [31];  [32];  [13];  [19];  [11];  [19];  [33];  [11];  [34];  [35];  [36];  [37];  [7];  [9] « less
  1. School of Physics and Astronomy, Sun Yat-Sen University, Guangzhou 510275, China; Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  2. Institut d’Estudis Espacials de Catalunya (IEEC), E-08193 Barcelona, Spain; Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  3. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
  4. Institute of Cosmology, Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK; Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  5. Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
  6. Department of Physics, Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  7. Institute of Cosmology, Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  8. ICTP South American Institute for Fundamental Research Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil; Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ – 20921-400, Brazil
  9. Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory, Casilla 603, La Serena, Chile
  10. Department of Physics, Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown 6140, South Africa
  11. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  12. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014, Paris, France; Institut d’Astrophysique de Paris, Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, F-75014, Paris, France
  13. Kavli Institute for Particle Astrophysics, Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  14. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ – 20921-400, Brazil; Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ – 20921-400, Brazil
  15. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA; National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  16. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  17. Kavli Institute for Particle Astrophysics, Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA
  18. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  19. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
  20. Department of Astronomy/Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA; Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  21. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  22. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  23. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA; Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  24. Department of Physics, Astronomy, University College London, Gower Street, London WC1E 6BT, UK; Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 16, CH-8093 Zurich, Switzerland
  25. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA; Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  26. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany; Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
  27. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA
  28. Australian Astronomical Observatory, North Ryde, NSW 2113, Australia
  29. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ – 20921-400, Brazil; Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil
  30. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain; Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain
  31. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  32. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  33. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  34. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ – 20921-400, Brazil; Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859, Campinas, SP, Brazil
  35. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  36. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  37. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1422720
Report Number(s):
arXiv:1801.04390; DES-2017-0306; FERMILAB-PUB-17-590
Journal ID: ISSN 0035-8711; 1648114
Grant/Contract Number:  
AC02-07CH11359
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 480; Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; large-scale structure of Universe

Citation Formats

Chan, K. C., Crocce, M., Ross, A. J., Avila, S., Elvin-Poole, J., Manera, M., Percival, W. J., Rosenfeld, R., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Eifler, T. F., Estrada, J., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Honscheid, K., Hoyle, B., James, D. J., Krause, E., Kuehn, K., Lahav, O., Lima, M., March, M., Menanteau, F., Miller, C. J., Miquel, R., Plazas, A. A., Reil, K., Roodman, A., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., and Walker, A. R. BAO from angular clustering: optimization and mitigation of theoretical systematics. United States: N. p., 2018. Web. doi:10.1093/mnras/sty2036.
Chan, K. C., Crocce, M., Ross, A. J., Avila, S., Elvin-Poole, J., Manera, M., Percival, W. J., Rosenfeld, R., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Eifler, T. F., Estrada, J., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Honscheid, K., Hoyle, B., James, D. J., Krause, E., Kuehn, K., Lahav, O., Lima, M., March, M., Menanteau, F., Miller, C. J., Miquel, R., Plazas, A. A., Reil, K., Roodman, A., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., & Walker, A. R. BAO from angular clustering: optimization and mitigation of theoretical systematics. United States. doi:10.1093/mnras/sty2036.
Chan, K. C., Crocce, M., Ross, A. J., Avila, S., Elvin-Poole, J., Manera, M., Percival, W. J., Rosenfeld, R., Abbott, T. M. C., Abdalla, F. B., Allam, S., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Cunha, C. E., D’Andrea, C. B., da Costa, L. N., Davis, C., De Vicente, J., Eifler, T. F., Estrada, J., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gaztanaga, E., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hartley, W. G., Honscheid, K., Hoyle, B., James, D. J., Krause, E., Kuehn, K., Lahav, O., Lima, M., March, M., Menanteau, F., Miller, C. J., Miquel, R., Plazas, A. A., Reil, K., Roodman, A., Sanchez, E., Scarpine, V., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., and Walker, A. R. Mon . "BAO from angular clustering: optimization and mitigation of theoretical systematics". United States. doi:10.1093/mnras/sty2036.
@article{osti_1422720,
title = {BAO from angular clustering: optimization and mitigation of theoretical systematics},
author = {Chan, K. C. and Crocce, M. and Ross, A. J. and Avila, S. and Elvin-Poole, J. and Manera, M. and Percival, W. J. and Rosenfeld, R. and Abbott, T. M. C. and Abdalla, F. B. and Allam, S. and Bertin, E. and Brooks, D. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Castander, F. J. and Cunha, C. E. and D’Andrea, C. B. and da Costa, L. N. and Davis, C. and De Vicente, J. and Eifler, T. F. and Estrada, J. and Flaugher, B. and Fosalba, P. and Frieman, J. and García-Bellido, J. and Gaztanaga, E. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hartley, W. G. and Honscheid, K. and Hoyle, B. and James, D. J. and Krause, E. and Kuehn, K. and Lahav, O. and Lima, M. and March, M. and Menanteau, F. and Miller, C. J. and Miquel, R. and Plazas, A. A. and Reil, K. and Roodman, A. and Sanchez, E. and Scarpine, V. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Walker, A. R.},
abstractNote = {Here, we study the methodology and potential theoretical systematics of measuring Baryon Acoustic Oscillations (BAO) using the angular correlation functions in tomographic bins. We calibrate and optimize the pipeline for the Dark Energy Survey Year 1 dataset using 1800 mocks. We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The fit results from the MLE are the least biased and their derived 1-$\sigma$ error bar are closest to the Gaussian distribution value after removing the extreme mocks with non-detected BAO signal. We show that incorrect assumptions in constructing the template, such as mismatches from the cosmology of the mocks or the underlying photo-$z$ errors, can lead to BAO angular shifts. We find that MLE is the method that best traces this systematic biases, allowing to recover the true angular distance values. In a real survey analysis, it may happen that the final data sample properties are slightly different from those of the mock catalog. We show that the effect on the mock covariance due to the sample differences can be corrected with the help of the Gaussian covariance matrix or more effectively using the eigenmode expansion of the mock covariance. In the eigenmode expansion, the eigenmodes are provided by some proxy covariance matrix. The eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the direct measurements of the covariance matrix because of the number of free parameters is substantially reduced},
doi = {10.1093/mnras/sty2036},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 480,
place = {United States},
year = {Mon Jul 30 00:00:00 EDT 2018},
month = {Mon Jul 30 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 30, 2019
Publisher's Version of Record

Save / Share: