skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Potential-specific structure at the hematite-electrolyte interface

Abstract

The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe 2O 3) (110$$\bar{2}$$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.

Authors:
; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1422282
Report Number(s):
PNNL-SA-128852
Journal ID: ISSN 1616-3028; 49381; KC0302060
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Advanced Functional Materials (Online)
Additional Journal Information:
Journal Volume: 28; Journal Issue: 8; Related Information: Article No. 1705618; Journal ID: ISSN 1616-3028
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
geochemistry; electrochemistry; synchrotron; oxides; interface chemistry; Environmental Molecular Sciences Laboratory

Citation Formats

McBriarty, Martin E., Stubbs, Joanne, Eng, Peter, and Rosso, Kevin M. Potential-specific structure at the hematite-electrolyte interface. United States: N. p., 2018. Web. doi:10.1002/adfm.201705618.
McBriarty, Martin E., Stubbs, Joanne, Eng, Peter, & Rosso, Kevin M. Potential-specific structure at the hematite-electrolyte interface. United States. doi:10.1002/adfm.201705618.
McBriarty, Martin E., Stubbs, Joanne, Eng, Peter, and Rosso, Kevin M. Wed . "Potential-specific structure at the hematite-electrolyte interface". United States. doi:10.1002/adfm.201705618.
@article{osti_1422282,
title = {Potential-specific structure at the hematite-electrolyte interface},
author = {McBriarty, Martin E. and Stubbs, Joanne and Eng, Peter and Rosso, Kevin M.},
abstractNote = {The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe2O3) (110$\bar{2}$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.},
doi = {10.1002/adfm.201705618},
journal = {Advanced Functional Materials (Online)},
issn = {1616-3028},
number = 8,
volume = 28,
place = {United States},
year = {2018},
month = {2}
}

Works referenced in this record:

Charge transport in metal oxides: A theoretical study of hematite α-Fe2O3
journal, April 2005

  • Iordanova, N.; Dupuis, M.; Rosso, K. M.
  • The Journal of Chemical Physics, Vol. 122, Issue 14
  • DOI: 10.1063/1.1869492

Structure of the Photo-catalytically Active Surface of SrTiO 3
journal, June 2016

  • Plaza, Manuel; Huang, Xin; Ko, J. Y. Peter
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b03338

Water structure at hematite–water interfaces
journal, April 2011


Experimental Correlation Between Interfacial Water Structure and Mineral Reactivity
journal, May 2013

  • Dewan, Shalaka; Yeganeh, Mohsen S.; Borguet, Eric
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 11
  • DOI: 10.1021/jz4007417

Mineral–water interfacial structures revealed by synchrotron X-ray scattering
journal, January 2004


GenX : an extensible X-ray reflectivity refinement program utilizing differential evolution
journal, November 2007


Calculation of crystal truncation rod structure factors for arbitrary rational surface terminations
journal, November 2002

  • Trainor, Thomas P.; Eng, Peter J.; Robinson, Ian K.
  • Journal of Applied Crystallography, Vol. 35, Issue 6
  • DOI: 10.1107/S0021889802013985

Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects
journal, August 2006

  • Bickmore, Barry R.; Rosso, Kevin M.; Tadanier, Christopher J.
  • Geochimica et Cosmochimica Acta, Vol. 70, Issue 16
  • DOI: 10.1016/j.gca.2006.06.006

Exploring the mineral–water interface: reduction and reaction kinetics of single hematite (α-Fe 2 O 3 ) nanoparticles
journal, January 2016

  • Shimizu, K.; Tschulik, K.; Compton, R. G.
  • Chemical Science, Vol. 7, Issue 2
  • DOI: 10.1039/C5SC03678J

Modelling heterogeneous interfaces for solar water splitting
journal, January 2017

  • Pham, Tuan Anh; Ping, Yuan; Galli, Giulia
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4803

Temperature- and potential-dependent structure of the mercury-electrolyte interface
journal, April 2016


Origin of 6-fold coordinated aluminum at (010)-type pyrophyllite edges
journal, May 2017

  • Okumura, M.; Sassi, M.; Rosso, K. M.
  • AIP Advances, Vol. 7, Issue 5
  • DOI: 10.1063/1.4983213

Commensurate Water Monolayer at the RuO 2 ( 110 ) /Water Interface
journal, April 2001


Crystal truncation rods and surface roughness
journal, March 1986


Active Sites and the Non-Steady-State Dissolution of Hematite
journal, October 1998

  • Samson, Sherry D.; Eggleston, Carrick M.
  • Environmental Science & Technology, Vol. 32, Issue 19
  • DOI: 10.1021/es9803097

Electrochemical Signatures of Crystallographic Orientation and Counterion Binding at the Hematite/Water Interface
journal, March 2015

  • Shimizu, K.; Boily, J. -F.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 11
  • DOI: 10.1021/jp511371c

Effect of surface site interactions on potentiometric titration of hematite (α-Fe2O3) crystal faces
journal, February 2013


Structure of a model TiO2 photocatalytic interface
journal, November 2016

  • Hussain, H.; Tocci, G.; Woolcot, T.
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4793

Electron Small Polarons and Their Mobility in Iron (Oxyhydr)oxide Nanoparticles
journal, September 2012


Linked Reactivity at Mineral-Water Interfaces Through Bulk Crystal Conduction
journal, March 2008


Charge trapping in the reductive dissolution of colloidal suspensions of iron(III) oxides
journal, September 1988

  • Mulvaney, Paul; Cooper, Ronald; Grieser, Franz
  • Langmuir, Vol. 4, Issue 5
  • DOI: 10.1021/la00083a028

Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface
journal, December 2013

  • Uysal, Ahmet; Zhou, Hua; Feng, Guang
  • The Journal of Physical Chemistry C, Vol. 118, Issue 1
  • DOI: 10.1021/jp4111025

The Orientation Dependence of the Photochemical Activity of α-Fe 2 O 3
journal, April 2016

  • Zhu, Yisi; Schultz, Andrew M.; Rohrer, Gregory S.
  • Journal of the American Ceramic Society, Vol. 99, Issue 7
  • DOI: 10.1111/jace.14201

In SituFourier Transform Infrared Measurements of Sulfate Adsorption on Hematite in Aqueous Solutions
journal, April 1997


Thermodynamic modelling of nanomorphologies of hematite and goethite
journal, January 2011

  • Guo, Haibo; Barnard, Amanda S.
  • Journal of Materials Chemistry, Vol. 21, Issue 31
  • DOI: 10.1039/c1jm10381d

Voltage-Controlled Interfacial Layering in an Ionic Liquid on SrTiO 3
journal, March 2016


Molecular dynamics simulations of the interactions between water and inorganic solids
journal, January 2005

  • Kerisit, Sebastien; Cooke, David J.; Spagnoli, Dino
  • Journal of Materials Chemistry, Vol. 15, Issue 14
  • DOI: 10.1039/b415633c

Dynamic Stabilization of Metal Oxide–Water Interfaces
journal, February 2017

  • McBriarty, Martin E.; von Rudorff, Guido Falk; Stubbs, Joanne E.
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b13096

Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3
journal, July 2017

  • Carneiro, Lucas M.; Cushing, Scott K.; Liu, Chong
  • Nature Materials, Vol. 16, Issue 8
  • DOI: 10.1038/nmat4936

Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution
journal, August 1995


Nonlocal bacterial electron transfer to hematite surfaces
journal, March 2003


Distribution of water molecules at Ag(111)/electrolyte interface as studied with surface X-ray scattering
journal, July 1995


Voltage-dependent ordering of water molecules at an electrode–electrolyte interface
journal, March 1994

  • Toney, Michael F.; Howard, Jason N.; Richer, Jocelyn
  • Nature, Vol. 368, Issue 6470
  • DOI: 10.1038/368444a0

Spectroscopic Evidence for Fe(II)−Fe(III) Electron Transfer at the Iron Oxide−Water Interface
journal, September 2004

  • Williams, Aaron G. B.; Scherer, Michelle M.
  • Environmental Science & Technology, Vol. 38, Issue 18
  • DOI: 10.1021/es049373g

Charge Transport at Ti-Doped Hematite (001)/Aqueous Interfaces
journal, February 2015

  • Chatman, Shawn; Pearce, Carolyn I.; Rosso, Kevin M.
  • Chemistry of Materials, Vol. 27, Issue 5
  • DOI: 10.1021/cm504451j

Effects of morphology and exposed facets of α-Fe 2 O 3 nanocrystals on photocatalytic water oxidation
journal, January 2015

  • Xiang, Quanjun; Chen, Gui; Lau, Tai-Chu
  • RSC Advances, Vol. 5, Issue 64
  • DOI: 10.1039/C5RA09354F

Surface diffraction study of the hydrated hematite surface
journal, January 2007


Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces
journal, May 2002