skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Broadening the Scope for Fluoride‐Free Synthesis of Siliceous Zeolites

Abstract

Abstract Siliceous zeolites are ideally suited for emerging applications in gas separations, sensors, and the next generation of low‐ k dielectric materials, but the use of fluoride in the synthesis significantly hinders their commercialization. Herein, we show that the dry gel conversion (DGC) technique can overcome this problem. Fluoride‐free synthesis of two siliceous zeolites—AMH‐4 (CHA‐type) and AMH‐5 (STT‐type), has been achieved for the first time using the method. Siliceous *BEA‐, MFI‐, and *MRE‐type zeolites have also been synthesized to obtain insights into the crystallization process. Charge‐balancing interactions between the inorganic cation, organic structure‐directing agent (OSDA), and Si−O defects are found to be an essential aspect. We quantify this factor in terms of the “OSDA charge/silica ratio” of the as‐made zeolites and demonstrate that the DGC technique is broadly applicable and opens up new avenues for fluoride‐free siliceous zeolite synthesis.

Authors:
ORCiD logo [1];  [1];  [2];  [3]; ORCiD logo [1]
  1. Department of Chemical Engineering University of Massachusetts Amherst 686 N Pleasant St Amherst MA 01003 USA
  2. Department of Polymer Science &, Engineering University of Massachusetts Amherst 120 Governor's Dr Amherst MA 01003 USA
  3. Department of Chemical Engineering University of Massachusetts Amherst 686 N Pleasant St Amherst MA 01003 USA, School of Chemical Engineering Northwest University Xi'an Shanxi 710069 China
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1422019
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition) Journal Volume: 57 Journal Issue: 14; Journal ID: ISSN 1433-7851
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Vattipalli, Vivek, Paracha, Abdul Mughis, Hu, Weiguo, Chen, Huiyong, and Fan, Wei. Broadening the Scope for Fluoride‐Free Synthesis of Siliceous Zeolites. Germany: N. p., 2018. Web. doi:10.1002/anie.201712684.
Vattipalli, Vivek, Paracha, Abdul Mughis, Hu, Weiguo, Chen, Huiyong, & Fan, Wei. Broadening the Scope for Fluoride‐Free Synthesis of Siliceous Zeolites. Germany. https://doi.org/10.1002/anie.201712684
Vattipalli, Vivek, Paracha, Abdul Mughis, Hu, Weiguo, Chen, Huiyong, and Fan, Wei. 2018. "Broadening the Scope for Fluoride‐Free Synthesis of Siliceous Zeolites". Germany. https://doi.org/10.1002/anie.201712684.
@article{osti_1422019,
title = {Broadening the Scope for Fluoride‐Free Synthesis of Siliceous Zeolites},
author = {Vattipalli, Vivek and Paracha, Abdul Mughis and Hu, Weiguo and Chen, Huiyong and Fan, Wei},
abstractNote = {Abstract Siliceous zeolites are ideally suited for emerging applications in gas separations, sensors, and the next generation of low‐ k dielectric materials, but the use of fluoride in the synthesis significantly hinders their commercialization. Herein, we show that the dry gel conversion (DGC) technique can overcome this problem. Fluoride‐free synthesis of two siliceous zeolites—AMH‐4 (CHA‐type) and AMH‐5 (STT‐type), has been achieved for the first time using the method. Siliceous *BEA‐, MFI‐, and *MRE‐type zeolites have also been synthesized to obtain insights into the crystallization process. Charge‐balancing interactions between the inorganic cation, organic structure‐directing agent (OSDA), and Si−O − defects are found to be an essential aspect. We quantify this factor in terms of the “OSDA charge/silica ratio” of the as‐made zeolites and demonstrate that the DGC technique is broadly applicable and opens up new avenues for fluoride‐free siliceous zeolite synthesis.},
doi = {10.1002/anie.201712684},
url = {https://www.osti.gov/biblio/1422019}, journal = {Angewandte Chemie (International Edition)},
issn = {1433-7851},
number = 14,
volume = 57,
place = {Germany},
year = {Wed Feb 21 00:00:00 EST 2018},
month = {Wed Feb 21 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at https://doi.org/10.1002/anie.201712684

Citation Metrics:
Cited by: 52 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Synthesis and structure of pure SiO2 chabazite: the SiO2 polymorph with the lowest framework density
journal, January 1998


Fluoride-free synthesis of a Sn-BEA catalyst by dry gel conversion
journal, January 2015


Pure silica NU-1 and Na- and Al-free Ti-NU-1 synthesized by the dry gel conversion method
journal, January 2000


Spontaneous nucleation and growth of pure silica zeolite-? free of connectivity defects
journal, January 1996


Studies on the Role of Fluoride Ion vs Reaction Concentration in Zeolite Synthesis
journal, January 2005


Pure-Silica Zeolite Low-k Dielectric Thin Films
journal, May 2001


Solvent-Free Synthesis of Zeolites from Solid Raw Materials
journal, September 2012


Crystallization behavior of zeolite beta during steam-assisted crystallization of dry gel
journal, October 2002


Synthesis and application of colloidal nanocrystals of the MFI-type zeolites
journal, April 2011


Synthesis of silica-sodalite from non-aqueous systems
journal, September 1985


A Study of Piperidinium Structure-Directing Agents in the Synthesis of Silica Molecular Sieves under Fluoride-Based Conditions
journal, July 2007


Control of the Morphology of All-Silica BEA-type Zeolite Synthesized in Basic Media
journal, February 2005


Zeolite Synthesis from a Charge Density Perspective: The Charge Density Mismatch Synthesis of UZM-5 and UZM-9
journal, November 2014


Ordered porous materials for emerging applications
journal, June 2002


Effect of NH+4 Exchange on Hydrophobicity and Catalytic Properties of Al-Free Ti–Si–beta Zeolite
journal, April 2001


<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1978-01-01">January 1978</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Thongthai, Chaufah; Siriwongpairat, Malinee</span> </li> <li> ScienceAsia, Vol. 4, Issue 2</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.2306/scienceasia1513-1874.1978.04.073" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.2306/scienceasia1513-1874.1978.04.073<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/j.crci.2004.12.009" target="_blank" rel="noopener noreferrer" class="name">The fluoride-based route to all-silica molecular sieves; a strategy for synthesis of new materials based upon close-packing of guest–host products<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-03-01">March 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Zones, Stacey I.; Hwang, Son-Jong; Elomari, Saleh</span> </li> <li> Comptes Rendus Chimie, Vol. 8, Issue 3-4</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.1016/j.crci.2004.12.009" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.1016/j.crci.2004.12.009<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1039/C4RA07627C" target="_blank" rel="noopener noreferrer" class="name">Pure-silica ZSM-22 zeolite rapidly synthesized by novel ionic liquid-directed dry-gel conversion<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2014-01-01">January 2014</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Wen, Haimeng; Zhou, Yu; Xie, Jingyan</span> </li> <li> RSC Adv., Vol. 4, Issue 91</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.1039/C4RA07627C" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.1039/C4RA07627C<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/cm049912g" target="_blank" rel="noopener noreferrer" class="name">Searching Organic Structure Directing Agents for the Synthesis of Specific Zeolitic Structures:  An Experimentally Tested Computational Study<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-02-01">February 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Sastre, German; Cantin, Angel; Diaz-Cabañas, Maria Jose</span> </li> <li> Chemistry of Materials, Vol. 17, Issue 3</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.1021/cm049912g" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.1021/cm049912g<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1038/nchem.1662" target="_blank" rel="noopener noreferrer" class="name">A family of zeolites with controlled pore size prepared using a top-down method<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2013-06-02">June 2013</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Roth, Wieslaw J.; Nachtigall, Petr; Morris, Russell E.</span> </li> <li> Nature Chemistry, Vol. 5, Issue 7</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.1038/nchem.1662" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.1038/nchem.1662<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/ja9840549" target="_blank" rel="noopener noreferrer" class="name">Five-Coordinate Silicon in High-Silica Zeolites<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1999-04-01">April 1999</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Koller, H.; Wölker, A.; Villaescusa, L. A.</span> </li> <li> Journal of the American Chemical Society, Vol. 121, Issue 14</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.1021/ja9840549" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.1021/ja9840549<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/cr020060i" target="_blank" rel="noopener noreferrer" class="name">The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2003-03-01">March 2003</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Cundy, Colin S.; Cox, Paul A.</span> </li> <li> Chemical Reviews, Vol. 103, Issue 3, p. 663-702</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.1021/cr020060i" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.1021/cr020060i<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1006/jssc.1993.1265" target="_blank" rel="noopener noreferrer" class="name">Powder Neutron Diffraction and 29Si MAS NMR Studies of Siliceous Zeolite-Y<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1993-09-01">September 1993</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Hriljac, J. A.; Eddy, M. M.; Cheetham, A. K.</span> </li> <li> Journal of Solid State Chemistry, Vol. 106, Issue 1</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.1006/jssc.1993.1265" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.1006/jssc.1993.1265<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1021/ja101649b" target="_blank" rel="noopener noreferrer" class="name">Ambient Pressure Dry-Gel Conversion Method for Zeolite MFI Synthesis Using Ionic Liquid and Microwave Heating<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-09-22">September 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#557B2D;"> Cai, Rui; Liu, Yan; Gu, Shuang</span> </li> <li> Journal of the American Chemical Society, Vol. 132, Issue 37</li> <li> <span class="text-muted related-url"><a href="https://doi.org/10.1021/ja101649b" class="text-muted" target="_blank" rel="noopener noreferrer">https://doi.org/10.1021/ja101649b<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span><span class="sr-only">Previous</span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span><span class="sr-only">Next</span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (24)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <legend class="sr-only">Sort options</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <button type="submit" style="display:none;" aria-hidden="true" title="Submit"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1422020" itemprop="url">Broadening the Scope for Fluoride‐Free Synthesis of Siliceous Zeolites</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Vattipalli, Vivek</span>; <span class="author">Paracha, Abdul</span>; <span class="author">Hu, Weiguo</span>; <span class="author">...</span> <span class="text-muted pubdata"> - Angewandte Chemie</span> </span></div> <div class="abstract">Abstract Siliceous zeolites are ideally suited for emerging applications in gas separations, sensors, and the next generation of low‐ k dielectric materials, but the use of fluoride in the synthesis significantly hinders their commercialization. Herein, we show that the dry gel conversion (DGC) technique can overcome this problem. Fluoride‐free synthesis of two siliceous zeolites—AMH‐4 (CHA‐type) and AMH‐5 (STT‐type), has been achieved for the first time using the method. Siliceous *BEA‐, MFI‐, and *MRE‐type zeolites have also been synthesized to obtain insights into the crystallization process. Charge‐balancing interactions between the inorganic cation, organic structure‐directing agent (OSDA), and Si−O <sup>−</sup> defects are<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> found to be an essential aspect. We quantify this factor in terms of the “OSDA charge/silica ratio” of the as‐made zeolites and demonstrate that the DGC technique is broadly applicable and opens up new avenues for fluoride‐free siliceous zeolite synthesis.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1002/ange.201712684" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1422020" data-product-type="Journal Article" data-product-subtype="PM" >https://doi.org/10.1002/ange.201712684</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1830688" itemprop="url">Identifying Order and Disorder in Double Four-Membered Rings via Raman Spectroscopy during Crystallization of LTA Zeolite</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Luo, Song</span>; <span class="author">Wang, Tongkun</span>; <span class="author">Gulbinski, Jason</span>; <span class="author">...</span> <span class="text-muted pubdata"> - Chemistry of Materials</span> </span></div> <div class="abstract">Fluoride (F<sup>–</sup>) has been essential for the synthesis of low-defect siliceous zeolites. It has been hypothesized that F<sup>–</sup> balances the positive charges from organic structure-directing agents (OSDAs) and stabilizes key building units during zeolite crystallization such as the double four-membered ring (D4R). However, due to the lack of characterization techniques for investigating medium-range structures, including rings and cages formed during zeolite crystallization, the roles of F<sup>–</sup> in stabilizing building units and maintaining local charge balance during zeolite assembly are not yet fully understood. Here, the crystallization of siliceous Linde type A (LTA) zeolite in the presence of F<sup>–</sup> was investigated<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> using Raman spectroscopy and periodic density functional theory (DFT) calculations. We have discovered that the F<sup>–</sup>-filled double four-membered ring (F<sup>–</sup>/D4R) and the empty D4R exhibit rather distinct Raman features. Both the F<sup>–</sup>/D4R and empty D4R are formed in the LTA zeolite synthesized in the presence of F<sup>–</sup> using 1,2-dimethyl-3-(4-methylbenzyl) imidazolium as the OSDA. Observed Raman bands of the F<sup>–</sup>/D4R and empty D4R, along with predictive DFT calculations on LTA supercells, reveal an ordered distribution of these two D4R units in the final as-made LTA zeolite. The discovery of these distinct Raman signatures of F<sup>–</sup>/D4R and empty D4R units opens an interesting new window for studying defects in the D4R during zeolite formation. In particular, we have observed variation in Raman intensities of F<sup>–</sup>/D4R and empty D4R bands during LTA crystallization; periodic DFT calculations indicate that the observed Raman behavior is consistent with empty D4R units containing one or two Si vacancies surrounded by Q<sub>3</sub> Si—consistent also with solid-state nuclear magnetic resonance measurement. These defects appear to heal during further crystallization, leading to the formation of defect-free LTA zeolite crystals. Altogether, our results provide deeper understanding on the roles of F<sup>–</sup> in charge balancing and stabilizing intact D4R units during zeolite formation.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1021/acs.chemmater.1c01420" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1830688" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1021/acs.chemmater.1c01420</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1830688" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1830688" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1866156" itemprop="url">Titrating Controlled Defects into Si-LTA Zeolite Crystals Using Multiple Organic Structure-Directing Agents</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Luo, Song</span>; <span class="author">Wang, Tongkun</span>; <span class="author">Qi, Long</span>; <span class="author">...</span> <span class="text-muted pubdata"> - Chemistry of Materials</span> </span></div> <div class="abstract">Controlling defects in zeolites is crucial for tuning their adsorption and catalytic properties. In this work, we have performed an integrated zeolite synthesis, spectroscopy, and density functional theory study to test the limit of F– as a charge-balancing agent that mitigates defects in siliceous zeolites. We focused on the synthesis of siliceous zeolite LTA at 150 °C with 1,2-dimethyl-3-(4-methylbenzyl) imidazolium as the primary organic structure-directing agent (OSDA) and tetramethyl ammonium (TMA) as the secondary OSDA. By varying the amount of TMA in the synthesis gel, positive charges were titrated into the resulting as-made Si-LTA. Surprisingly, we found that greater TMA<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> concentration does not induce more F– to enter into the zeolite. 29Si solid-state MAS NMR, Raman spectroscopy, and density functional theory suggest that this system has surpassed its capacity for F– to balance OSDA charge, and additional positive charge is balanced by Si–O– framework defects. The number of defects in the as-made Si-LTA can be precisely titrated by the amount of TMA in the zeolite structures. For the Si-LTA synthesized without TMA, framework defects formed in the early stage of crystal growth were found to heal during later crystallization, leading to defect-free Si-LTA. However, for the Si-LTA synthesized with TMA, the defects formed in early stages do not heal. A DFT thermodynamic analysis explains that crowding of Si-LTA pores by TMA impedes defect healing; this prediction is corroborated by synthesis experiments at an elevated temperature (170 °C). These results indicate that F– can have a limited capacity to balance OSDA charge in zeolite synthesis, opening up a third route to zeolite synthesis intermediate between the fluoride and hydroxide routes.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1021/acs.chemmater.1c04036" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1866156" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1021/acs.chemmater.1c04036</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/servlets/purl/1866156" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1866156" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1401665" itemprop="url">Open‐Pore Two‐Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbon‐Isomer‐Selective Membranes on Porous Polymer Supports</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Zhang, Han</span>; <span class="author">Xiao, Qiang</span>; <span class="author">Guo, Xianghai</span>; <span class="author">...</span> <span class="text-muted pubdata"> - Angewandte Chemie</span> </span></div> <div class="abstract">Abstract Two‐dimensional zeolite nanosheets that do not contain any organic structure‐directing agents were prepared from a multilamellar MFI (ML‐MFI) zeolite. ML‐MFI was first exfoliated by melt compounding and then detemplated by treatment with a mixture of H <sub>2</sub> SO <sub>4</sub> and H <sub>2</sub> O <sub>2</sub> (piranha solution). The obtained OSDA‐free MFI nanosheets disperse well in water and can be used for coating applications. Deposits made on porous polybenzimidazole (PBI) supports by simple filtration of these suspensions exhibit an n ‐butane/isobutane selectivity of 5.4, with an n ‐butane permeance of 3.5×10 <sup>−7</sup>  mol m <sup>−2</sup>  s <sup>−1</sup>  Pa <sup>−1</sup> (ca. 1000 GPU).</div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1002/ange.201601135" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1401665" data-product-type="Journal Article" data-product-subtype="PM" >https://doi.org/10.1002/ange.201601135</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/biblio/1400963" itemprop="url">Open‐Pore Two‐Dimensional MFI Zeolite Nanosheets for the Fabrication of Hydrocarbon‐Isomer‐Selective Membranes on Porous Polymer Supports</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Zhang, Han</span>; <span class="author">Xiao, Qiang</span>; <span class="author">Guo, Xianghai</span>; <span class="author">...</span> <span class="text-muted pubdata"> - Angewandte Chemie (International Edition)</span> </span></div> <div class="abstract">Abstract Two‐dimensional zeolite nanosheets that do not contain any organic structure‐directing agents were prepared from a multilamellar MFI (ML‐MFI) zeolite. ML‐MFI was first exfoliated by melt compounding and then detemplated by treatment with a mixture of H <sub>2</sub> SO <sub>4</sub> and H <sub>2</sub> O <sub>2</sub> (piranha solution). The obtained OSDA‐free MFI nanosheets disperse well in water and can be used for coating applications. Deposits made on porous polybenzimidazole (PBI) supports by simple filtration of these suspensions exhibit an n ‐butane/isobutane selectivity of 5.4, with an n ‐butane permeance of 3.5×10 <sup>−7</sup>  mol m <sup>−2</sup>  s <sup>−1</sup>  Pa <sup>−1</sup> (ca. 1000 GPU).</div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 91<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1002/anie.201601135" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1400963" data-product-type="Journal Article" data-product-subtype="PM" >https://doi.org/10.1002/anie.201601135</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item d-block d-inline-small"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item d-block d-inline-small"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item d-block d-inline-small"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item"><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank" class="pure-menu-link">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook"></span><span class="sr-only">Facebook</span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter"></span><span class="sr-only">Twitter</span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play"></span><span class="sr-only">YouTube</span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/css/ostigov.fonts.240327.0425.css" rel="stylesheet"> <script src="/js/ostigov.240327.0425.js"></script><noscript></noscript> <script defer src="/js/ostigov.biblio.240327.0425.js"></script><noscript></noscript> <script async type="text/javascript" src="/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- OSTI.GOV v.240327.0425 --> </html>