skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dependence of spin pumping and spin transfer torque upon Ni 81 Fe 19 thickness in Ta / Ag / Ni 81 Fe 19 / Ag / Co 2 MnGe / Ag / Ta spin-valve structures

Abstract

Spin pumping has been studied within Ta / Ag / Ni 81Fe 19 (0–5 nm) / Ag (6 nm) / Co 2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni 81Fe 19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co 2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth thatmore » we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [2];  [3];  [4];  [4];  [4];  [5];  [6];  [6]
  1. Univ. of Exeter, Exeter (United Kingdom)
  2. Diamond Light Source, Didcot (United Kingdom)
  3. Univ. of Oxford, Oxford (United Kingdom)
  4. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Univ. of York, York (United Kingdom)
  6. HGST, San Jose, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1421829
Alternate Identifier(s):
OSTI ID: 1400009
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 96; Journal Issue: 14; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Durrant, C. J., Shelford, L. R., Valkass, R. A. J., Hicken, R. J., Figueroa, A. I., Baker, A. A., van der Laan, G., Duffy, L. B., Shafer, P., Klewe, C., Arenholz, E., Cavill, S. A., Childress, J. R., and Katine, J. A. Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag/Ni81Fe19/Ag/Co2MnGe/Ag/Ta spin-valve structures. United States: N. p., 2017. Web. doi:10.1103/PhysRevB.96.144421.
Durrant, C. J., Shelford, L. R., Valkass, R. A. J., Hicken, R. J., Figueroa, A. I., Baker, A. A., van der Laan, G., Duffy, L. B., Shafer, P., Klewe, C., Arenholz, E., Cavill, S. A., Childress, J. R., & Katine, J. A. Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag/Ni81Fe19/Ag/Co2MnGe/Ag/Ta spin-valve structures. United States. doi:10.1103/PhysRevB.96.144421.
Durrant, C. J., Shelford, L. R., Valkass, R. A. J., Hicken, R. J., Figueroa, A. I., Baker, A. A., van der Laan, G., Duffy, L. B., Shafer, P., Klewe, C., Arenholz, E., Cavill, S. A., Childress, J. R., and Katine, J. A. Wed . "Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag/Ni81Fe19/Ag/Co2MnGe/Ag/Ta spin-valve structures". United States. doi:10.1103/PhysRevB.96.144421. https://www.osti.gov/servlets/purl/1421829.
@article{osti_1421829,
title = {Dependence of spin pumping and spin transfer torque upon Ni81Fe19 thickness in Ta/Ag/Ni81Fe19/Ag/Co2MnGe/Ag/Ta spin-valve structures},
author = {Durrant, C. J. and Shelford, L. R. and Valkass, R. A. J. and Hicken, R. J. and Figueroa, A. I. and Baker, A. A. and van der Laan, G. and Duffy, L. B. and Shafer, P. and Klewe, C. and Arenholz, E. and Cavill, S. A. and Childress, J. R. and Katine, J. A.},
abstractNote = {Spin pumping has been studied within Ta / Ag / Ni81Fe19 (0–5 nm) / Ag (6 nm) / Co2MnGe (5 nm) / Ag / Ta large-area spin-valve structures, and the transverse spin current absorption of Ni81Fe19 sink layers of different thicknesses has been explored. In some circumstances, the spin current absorption can be inferred from the modification of the Co2MnGe source layer damping in vector network analyzer ferromagnetic resonance (VNA-FMR) experiments. However, the spin current absorption is more accurately determined from element-specific phase-resolved x-ray ferromagnetic resonance (XFMR) measurements that directly probe the spin transfer torque (STT) acting on the sink layer at the source layer resonance. Comparison with a macrospin model allows the real part of the effective spin mixing conductance to be extracted. We find that spin current absorption in the outer Ta layers has a significant impact, while sink layers with thicknesses of less than 0.6 nm are found to be discontinuous and superparamagnetic at room temperature, and lead to a noticeable increase of the source layer damping. For the thickest 5-nm sink layer, increased spin current absorption is found to coincide with a reduction of the zero frequency FMR linewidth that we attribute to improved interface quality. Furthermore, this study shows that the transverse spin current absorption does not follow a universal dependence upon sink layer thickness but instead the structural quality of the sink layer plays a crucial role.},
doi = {10.1103/PhysRevB.96.144421},
journal = {Physical Review B},
issn = {2469-9950},
number = 14,
volume = 96,
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Spin Pumping and Inverse Spin Hall Effect in Platinum: The Essential Role of Spin-Memory Loss at Metallic Interfaces
journal, March 2014


Electrical Detection of Spin Pumping due to the Precessing Magnetization of a Single Ferromagnet
journal, November 2006


Enhanced ferromagnetic damping in Permalloy∕Cu bilayers
journal, January 2006

  • Gerrits, Th.; Schneider, M. L.; Silva, T. J.
  • Journal of Applied Physics, Vol. 99, Issue 2
  • DOI: 10.1063/1.2159076

Magnetization reversal processes of single nanomagnets and their energy barrier
journal, December 2010

  • Krone, P.; Makarov, D.; Albrecht, M.
  • Journal of Magnetism and Magnetic Materials, Vol. 322, Issue 23
  • DOI: 10.1016/j.jmmm.2010.07.041

Enhanced Gilbert Damping in Thin Ferromagnetic Films
journal, February 2002


Electrical detection of spin transport in lateral ferromagnet–semiconductor devices
journal, February 2007

  • Lou, Xiaohua; Adelmann, Christoph; Crooker, Scott A.
  • Nature Physics, Vol. 3, Issue 3
  • DOI: 10.1038/nphys543

Spin Hall voltages from a.c. and d.c. spin currents
journal, April 2014

  • Wei, Dahai; Obstbaum, Martin; Ribow, Mirko
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4768

Penetration Depth of Transverse Spin Current in Ultrathin Ferromagnets
journal, September 2012


X-ray magnetic circular dichroism—A versatile tool to study magnetism
journal, October 2014


Gilbert Damping in Single and Multilayer Ultrathin Films: Role of Interfaces in Nonlocal Spin Dynamics
journal, November 2001


Spin Hall effects
journal, October 2015

  • Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.
  • Reviews of Modern Physics, Vol. 87, Issue 4
  • DOI: 10.1103/RevModPhys.87.1213

Giant spin-accumulation signal and pure spin-current-induced reversible magnetization switching
journal, October 2008

  • Yang, Tao; Kimura, Takashi; Otani, Yoshichika
  • Nature Physics, Vol. 4, Issue 11
  • DOI: 10.1038/nphys1095

Phase-resolved x-ray ferromagnetic resonance measurements in fluorescence yield
journal, April 2011

  • Marcham, M. K.; Keatley, P. S.; Neudert, A.
  • Journal of Applied Physics, Vol. 109, Issue 7
  • DOI: 10.1063/1.3567143

Mössbauer Study on Fe–Ag and Fe–Ni–Ag Super-Laminates Prepared by Repeated Rolling and Treated by Gas Nitriding
journal, January 2003


Phase-resolved x-ray ferromagnetic resonance measurements of spin pumping in spin valve structures
journal, May 2013


Room-Temperature Reversible Spin Hall Effect
journal, April 2007


Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist’s critical review
journal, April 2007


Low emissivity Ag/Ta/glass multilayer thin films deposited by sputtering
journal, September 2011

  • Park, Sun Ho; Lee, Kee Sun; Sivasankar Reddy, A.
  • Journal of Applied Physics, Vol. 110, Issue 6
  • DOI: 10.1063/1.3636107

Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect
journal, May 2006

  • Saitoh, E.; Ueda, M.; Miyajima, H.
  • Applied Physics Letters, Vol. 88, Issue 18
  • DOI: 10.1063/1.2199473

Spin current studies in Fe∕Ag,Au∕Fe by ferromagnetic resonance and time-resolved magneto-optics
journal, April 2008

  • Kardasz, B.; Mosendz, O.; Heinrich, B.
  • Journal of Applied Physics, Vol. 103, Issue 7
  • DOI: 10.1063/1.2834399

Nonlocal magnetization dynamics in ferromagnetic heterostructures
journal, December 2005

  • Tserkovnyak, Yaroslav; Brataas, Arne; Bauer, Gerrit E. W.
  • Reviews of Modern Physics, Vol. 77, Issue 4
  • DOI: 10.1103/RevModPhys.77.1375

Identification of Transverse Spin Currents in Noncollinear Magnetic Structures
journal, December 2004


Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements
journal, August 2016


Observation of the Spin Hall Effect in Semiconductors
journal, December 2004


Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials
journal, December 2013

  • Sánchez, J. C. Rojas; Vila, L.; Desfonds, G.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3944

Magnetic normal modes of nanoelements
journal, May 2005

  • McMichael, R. D.; Stiles, M. D.
  • Journal of Applied Physics, Vol. 97, Issue 10
  • DOI: 10.1063/1.1852191

Perpendicular ferromagnetic resonance measurements of damping and Land e ́ g factor in sputtered (Co 2 Mn) 1 x Ge x thin films
journal, August 2011


Microwave oscillations of a nanomagnet driven by a spin-polarized current
journal, September 2003

  • Kiselev, S. I.; Sankey, J. C.; Krivorotov, I. N.
  • Nature, Vol. 425, Issue 6956
  • DOI: 10.1038/nature01967

Magnetization Dynamics due to Pure Spin Currents in Magnetic Double Layers
journal, December 2007


Taming spin currents
journal, August 2011

  • Žutić, Igor; Dery, Hanan
  • Nature Materials, Vol. 10, Issue 9
  • DOI: 10.1038/nmat3097

Permalloy, A New Magnetic Material of Very High Permeability
journal, July 1923


Ferromagnetic resonance of patterned chromium dioxide thin films grown by selective area chemical vapour deposition
journal, May 2015

  • Durrant, C. J.; Jokubaitis, M.; Yu, W.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4907766

Spin flip diffusion length and giant magnetoresistance at low temperatures
journal, May 1994


Ultrathin metallic magnetic films: magnetic anisotropies and exchange interactions
journal, October 1993


Dynamic Exchange Coupling in Magnetic Bilayers
journal, May 2003


Precise determination of the spectroscopic g -factor by use of broadband ferromagnetic resonance spectroscopy
journal, December 2013

  • Shaw, Justin M.; Nembach, Hans T.; Silva, T. J.
  • Journal of Applied Physics, Vol. 114, Issue 24
  • DOI: 10.1063/1.4852415