skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Commissioning and First Results from the Fermilab Cryomodule Test Stand

Abstract

A new test stand dedicated to SRF cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodule assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.

Authors:
;
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1421542
Report Number(s):
FERMILAB-CONF-16-744-AD-APC-TD
1633112
DOE Contract Number:
AC02-07CH11359
Resource Type:
Conference
Resource Relation:
Conference: 28th International Linear Accelerator Conference, East Lansing, Michigan, 09/25-09/30/2016
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Harms, Elvin, and et al. Commissioning and First Results from the Fermilab Cryomodule Test Stand. United States: N. p., 2017. Web. doi:10.18429/JACoW-LINAC2016-MOPLR022.
Harms, Elvin, & et al. Commissioning and First Results from the Fermilab Cryomodule Test Stand. United States. doi:10.18429/JACoW-LINAC2016-MOPLR022.
Harms, Elvin, and et al. Mon . "Commissioning and First Results from the Fermilab Cryomodule Test Stand". United States. doi:10.18429/JACoW-LINAC2016-MOPLR022. https://www.osti.gov/servlets/purl/1421542.
@article{osti_1421542,
title = {Commissioning and First Results from the Fermilab Cryomodule Test Stand},
author = {Harms, Elvin and et al.},
abstractNote = {A new test stand dedicated to SRF cryomodule testing, CMTS1, has been commissioned and is now in operation at Fermilab. The first device to be cooled down and powered in this facility is the prototype 1.3 GHz cryomodule assembled at Fermilab for LCLS-II. We describe the demonstrated capabilities of CMTS1, report on steps taken during commissioning, provide an overview of first test results, and survey future plans.},
doi = {10.18429/JACoW-LINAC2016-MOPLR022},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.
  • Powered operation of Cryomodule 1 (CM-1) at the Fermilab SRF Beam Test Facility began in late 2010. Since then a series of tests first on the eight individual cavities and then the full cryomodule have been performed. We report on the results of these tests and lessons learned which will have an impact on future module testing at Fermilab. Since November 2010 Cryomodule 1 has been operating at 2 Kelvin. After evaluating each of the eight cavities while individually powered, the entire module has recently been powered and peak operation determined as shown in Figure 4. Several more weeks ofmore » measurements are planned before the module is warmed up, removed and replaced with Cryomodule 2 now under assembly at Fermilab.« less
  • An interlock system has been designed for the Fermilab Cryo-module Test Stand (CMTS), a test bed for the cryo- modules to be used in the upcoming Linac Coherent Light Source 2 (LCLS-II) project at SLAC. The interlock system features 8 independent subsystems, one per superconducting RF cavity and solid state amplifier (SSA) pair. Each system monitors several devices to detect fault conditions such as arcing in the waveguides or quenching of the SRF system. Additionally each system can detect fault conditions by monitoring the RF power seen at the cavity coupler through a directional coupler. In the event of amore » fault condition, each system is capable of removing RF signal to the amplifier (via a fast RF switch) as well as turning off the SSA. Additionally, each input signal is available for re- mote viewing and recording via a Fermilab designed digitizer board and MVME 5500 processor.« less
  • This paper describes the cryogenic system for the Cryomodule Test Stand (CMTS) at the new Cryomodule Test Facility (CMTF) located at Fermilab. CMTS is designed for production testing of the 1.3 GHz and 3.9GHz cryomodules to be used in the Linac Coherent Light Source II (LCLSII), which is an upgrade to an existing accelerator at Stanford Linear Accelerator Laboratory (SLAC). This paper will focus on the cryogenic system that extends from the helium refrigeration plant to the CMTS cave. Topics covered will include component design, installation and commissioning progress, and operational plans. The paper will conclude with a description ofmore » the heat load measurement plan.« less
  • Eight 1.3-GHz, nine-cell SRF cavities have been installed in a cryomodule intended to demonstrate the ILC design goal of 31.5 MV/m. These cavities all underwent two types of individual RF testing: a low-power continuous-wave test of the 'bare' cavity and a high-power pulsed test of the 'dressed' cavity. Presented here is a discussion of the results from these tests and a comparison of their performance in the two configurations.