skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring* [COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring]

Abstract

Here, we present time-delay measurements for the new quadruple imaged quasar DES J0408–5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In only seven months we very accurately measured one of the time delays in DES J0408–5354: Δt(AB) = –112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = –155.5 ± 12.8 days (8.2%) and Δt(BD) = –42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity fieldmore » of the lensing galaxy.« less

Authors:
; ORCiD logo; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21); USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
DES Collaboration; DES
OSTI Identifier:
1419986
Alternate Identifier(s):
OSTI ID: 1422478; OSTI ID: 1429333
Report Number(s):
arXiv:1706.09424; FERMILAB-PUB-17-204-AE
Journal ID: ISSN 0004-6361; PII: aa31461-17
Grant/Contract Number:
AC02-76SF00515; AC05-00OR22725; AC02-07CH11359
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Astronomy and Astrophysics
Additional Journal Information:
Journal Volume: 609; Journal ID: ISSN 0004-6361
Publisher:
EDP Sciences
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; methods: data analysis; gravitational lensing: strong; cosmological parameters; 46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Courbin, F., Bonvin, V., Buckley-Geer, E., Fassnacht, C. D., Frieman, J., Lin, H., Marshall, P. J., Suyu, S. H., Treu, T., Anguita, T., Motta, V., Meylan, G., Paic, E., Tewes, M., Agnello, A., Chao, D. C. -Y., Chijani, M., Gilman, D., Rojas, K., Williams, P., Hempel, A., Kim, S., Lachaume, R., Rabus, M., Abbott, T. M. C., Allam, S., Annis, J., Banerji, M., Bechtol, K., Benoit-Lévy, A., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., D’Andrea, C. B., da Costa, L. N., Davis, C., DePoy, D. L., Desai, S., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., McMahon, R. G., Menanteau, F., Miquel, R., Nord, B., Plazas, A. A., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Tucker, D. L., Walker, A. R., and Wester, W.. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring* [COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring]. United States: N. p., 2018. Web. doi:10.1051/0004-6361/201731461.
Courbin, F., Bonvin, V., Buckley-Geer, E., Fassnacht, C. D., Frieman, J., Lin, H., Marshall, P. J., Suyu, S. H., Treu, T., Anguita, T., Motta, V., Meylan, G., Paic, E., Tewes, M., Agnello, A., Chao, D. C. -Y., Chijani, M., Gilman, D., Rojas, K., Williams, P., Hempel, A., Kim, S., Lachaume, R., Rabus, M., Abbott, T. M. C., Allam, S., Annis, J., Banerji, M., Bechtol, K., Benoit-Lévy, A., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., D’Andrea, C. B., da Costa, L. N., Davis, C., DePoy, D. L., Desai, S., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., McMahon, R. G., Menanteau, F., Miquel, R., Nord, B., Plazas, A. A., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Tucker, D. L., Walker, A. R., & Wester, W.. COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring* [COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring]. United States. doi:10.1051/0004-6361/201731461.
Courbin, F., Bonvin, V., Buckley-Geer, E., Fassnacht, C. D., Frieman, J., Lin, H., Marshall, P. J., Suyu, S. H., Treu, T., Anguita, T., Motta, V., Meylan, G., Paic, E., Tewes, M., Agnello, A., Chao, D. C. -Y., Chijani, M., Gilman, D., Rojas, K., Williams, P., Hempel, A., Kim, S., Lachaume, R., Rabus, M., Abbott, T. M. C., Allam, S., Annis, J., Banerji, M., Bechtol, K., Benoit-Lévy, A., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., D’Andrea, C. B., da Costa, L. N., Davis, C., DePoy, D. L., Desai, S., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Honscheid, K., James, D. J., Kuehn, K., Kuhlmann, S., Kuropatkin, N., Lahav, O., Lima, M., Maia, M. A. G., March, M., Marshall, J. L., McMahon, R. G., Menanteau, F., Miquel, R., Nord, B., Plazas, A. A., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Sobreira, F., Suchyta, E., Tarle, G., Tucker, D. L., Walker, A. R., and Wester, W.. Tue . "COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring* [COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring]". United States. doi:10.1051/0004-6361/201731461.
@article{osti_1419986,
title = {COSMOGRAIL: the COSmological MOnitoring of GRAvItational Lenses: XVI. Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring* [COSMOGRAIL XVI: Time delays for the quadruply imaged quasar DES J0408–5354 with high-cadence photometric monitoring]},
author = {Courbin, F. and Bonvin, V. and Buckley-Geer, E. and Fassnacht, C. D. and Frieman, J. and Lin, H. and Marshall, P. J. and Suyu, S. H. and Treu, T. and Anguita, T. and Motta, V. and Meylan, G. and Paic, E. and Tewes, M. and Agnello, A. and Chao, D. C. -Y. and Chijani, M. and Gilman, D. and Rojas, K. and Williams, P. and Hempel, A. and Kim, S. and Lachaume, R. and Rabus, M. and Abbott, T. M. C. and Allam, S. and Annis, J. and Banerji, M. and Bechtol, K. and Benoit-Lévy, A. and Brooks, D. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and D’Andrea, C. B. and da Costa, L. N. and Davis, C. and DePoy, D. L. and Desai, S. and Flaugher, B. and Fosalba, P. and García-Bellido, J. and Gaztanaga, E. and Goldstein, D. A. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Honscheid, K. and James, D. J. and Kuehn, K. and Kuhlmann, S. and Kuropatkin, N. and Lahav, O. and Lima, M. and Maia, M. A. G. and March, M. and Marshall, J. L. and McMahon, R. G. and Menanteau, F. and Miquel, R. and Nord, B. and Plazas, A. A. and Sanchez, E. and Scarpine, V. and Schindler, R. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Sobreira, F. and Suchyta, E. and Tarle, G. and Tucker, D. L. and Walker, A. R. and Wester, W.},
abstractNote = {Here, we present time-delay measurements for the new quadruple imaged quasar DES J0408–5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In only seven months we very accurately measured one of the time delays in DES J0408–5354: Δt(AB) = –112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = –155.5 ± 12.8 days (8.2%) and Δt(BD) = –42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy.},
doi = {10.1051/0004-6361/201731461},
journal = {Astronomy and Astrophysics},
number = ,
volume = 609,
place = {United States},
year = {Tue Jan 09 00:00:00 EST 2018},
month = {Tue Jan 09 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on January 9, 2019
Publisher's Version of Record

Save / Share:
  • We present time-delay measurements for the new quadruple imaged quasar DES J0408-5354, the first quadruple imaged quasar found in the Dark Energy Survey (DES). Our result is made possible by implementing a new observational strategy using almost daily observations with the MPIA 2.2 m telescope at La Silla observatory and deep exposures reaching a signal-to-noise ratio of about 1000 per quasar image. This data qualityallows us to catch small photometric variations (a few mmag rms) of the quasar, acting on temporal scales much shorter than microlensing, and hence making the time delay measurement very robust against microlensing. In only sevenmore » months we very accurately measured one of the time delays in DES J0408-5354: Δt(AB) = -112.1 ± 2.1 days (1.8%) using only the MPIA 2.2 m data. In combination with data taken with the 1.2 m Euler Swiss telescope, we also measured two delays involving the D component of the system Δt(AD) = -155.5 ± 12.8 days (8.2%) and Δt(BD) = -42.4 ± 17.6 days (41%), where all the error bars include systematics. Turning these time delays into cosmological constraints will require deep Hubble Space Telescope (HST) imaging or ground-based adaptive optics (AO), and information on the velocity field of the lensing galaxy.« less
  • We present time-delay measurements for the new quadruply imaged quasar DESJ0408-5354, the first quadruply imaged quasar found in the Dark Energy Survey(DES). Our result is made possible by implementing a new observational strategyusing almost daily observations with the MPIA 2.2m telescope at La Sillaobservatory and deep exposures reaching a signal-to-noise ratio of about 1000per quasar image. This data quality allows us to catch small photometricvariations (a few mmag rms) of the quasar, acting on temporal scales muchshorter than microlensing, hence making the time delay measurement very robustagainst microlensing. In only 7 months we measure very accurately one of thetime delaysmore » in DES J0408-5354: Dt(AB) = -112.1 +- 2.1 days (1.8%) using onlythe MPIA 2.2m data. In combination with data taken with the 1.2m Euler Swisstelescope, we also measure two delays involving the D component of the systemDt(AD) = -155.5 +- 12.8 days (8.2%) and Dt(BD) = -42.4 +- 17.6 days (41%),where all the error bars include systematics. Turning these time delays intocosmological constraints will require deep HST imaging or ground-based AdaptiveOptics (AO), and information on the velocity field of the lensing galaxy.« less
  • We present time-delay estimates for the quadruply imaged quasar PG 1115+080. Our resuls are based on almost daily observations for seven months at the ESO MPIA 2.2m telescope at La Silla Observatory, reaching a signal-to-noise ratio of about 1000 per quasar image. In addition, we re-analyse existing light curves from the literature that we complete with an additional three seasons of monitoring with the Mercator telescope at La Palma Observatory. When exploring the possible source of bias we consider the so-called microlensing time delay, a potential source of systematic error so far never directly accounted for in previous time-delay publications.more » In fifteen years of data on PG 1115+080, we find no strong evidence of microlensing time delay. Therefore not accounting for this effect, our time-delay estimates on the individual data sets are in good agreement with each other and with the literature. Combining the data sets, we obtain the most precise time-delay estimates to date on PG 1115+080, with Dt(AB) = 8.3+1.5-1.6 days (18.7% precision), Dt(AC) = 9.9+1.1-1.1 days (11.1%) and Dt(BC) = 18.8+1.6-1.6 days (8.5%). Turning these time delays into cosmological constraints is done in a companion paper that makes use of ground-based Adaptive Optics (AO) with the Keck telescope.« less
  • We present gravitational lens models of the multiply imaged quasar DES J0408-5354, recently discovered in the Dark Energy Survey (DES) footprint, with the aim of interpreting its remarkable quad-like configuration. We first model the DES single-epochmore » $grizY$ images as a superposition of a lens galaxy and four point-like objects, obtaining spectral energy distributions (SEDs) and relative positions for the objects. Three of the point sources (A,B,D) have SEDs compatible with the discovery quasar spectra, while the faintest point-like image (G2/C) shows significant reddening and a `grey' dimming of $$\approx0.8$$mag. In order to understand the lens configuration, we fit different models to the relative positions of A,B,D. Models with just a single deflector predict a fourth image at the location of G2/C but considerably brighter and bluer. The addition of a small satellite galaxy ($$R_{\rm E}\approx0.2$$") in the lens plane near the position of G2/C suppresses the flux of the fourth image and can explain both the reddening and grey dimming. All models predict a main deflector with Einstein radius between $1.7"$ and $2.0",$ velocity dispersion $267-280$km/s and enclosed mass $$\approx 6\times10^{11}M_{\odot},$$ even though higher resolution imaging data are needed to break residual degeneracies in model parameters. The longest time-delay (B-A) is estimated as $$\approx 85$$ (resp. $$\approx125$$) days by models with (resp. without) a perturber near G2/C. The configuration and predicted time-delays of J0408-5354 make it an excellent target for follow-up aimed at understanding the source quasar host galaxy and substructure in the lens, and measuring cosmological parameters. We also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less
  • We present detailed modelling of the recently discovered, quadruply lensed quasar J0408-5354, with the aim of interpreting its remarkable configuration: besides three quasar images (A,B,D) around the main deflector (G1), a fourth image (C) is significantly reddened and dimmed by a perturber (G2) which is not detected in the Dark Energy Survey imaging data. From lens models incorporating (dust-corrected) flux ratios, we find a perturber Einstein radius 0.04 arcsec ≲ RE, G2 ≲ 0.2 arcsec and enclosed mass M p(R E, G2) ≲ 1.0 × 10 10 M⊙. The main deflector has stellar mass log10 (M */M⊙) =11.49more » $$+0.46\atop{-0.32}$$ log10 (M */M⊙)=11.49-0.32+0.46 , a projected mass M p(R E, G1) ≈ 6 × 10 11 M⊙ within its Einstein radius R E, G1 = (1.85 ± 0.15) arcsec and predicted velocity dispersion 267–280 km s -1. Follow-up images from a companion monitoring campaign show additional components, including a candidate second source at a redshift between the quasar and G1. Models with free perturbers, and dust-corrected and delay-corrected flux ratios, are also explored. The predicted time-delays (Δt AB = (135.0 ± 12.6) d, Δt BD = (21.0 ± 3.5) d) roughly agree with those measured, but better imaging is required for proper modelling and comparison. Lastly, we also discuss some lessons learnt from J0408-5354 on lensed quasar finding strategies, due to its chromaticity and morphology.« less
    Cited by 2