skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design of Light-Weight High-Entropy Alloys

Abstract

High-entropy alloys (HEAs) are a new class of solid-solution alloys that have attracted worldwide attention for their outstanding properties. Owing to the demand from transportation and defense industries, light-weight HEAs have also garnered widespread interest from scientists for use as potential structural materials. Great efforts have been made to study the phase-formation rules of HEAs to accelerate and refine the discovery process. In this paper, many proposed solid-solution phase-formation rules are assessed, based on a series of known and newly-designed light-weight HEAs. The results indicate that these empirical rules work for most compositions but also fail for several alloys. Light-weight HEAs often involve the additions of Al and/or Ti in great amounts, resulting in large negative enthalpies for forming solid-solution phases and/or intermetallic compounds. Accordingly, these empirical rules need to be modified with the new experimental data. In contrast, CALPHAD (acronym of the calculation of phase diagrams) method is demonstrated to be an effective approach to predict the phase formation in HEAs as a function of composition and temperature. Future perspectives on the design of light-weight HEAs are discussed in light of CALPHAD modeling and physical metallurgy principles

Authors:
 [1];  [2];  [1];  [1];  [3];  [1];  [4]; ORCiD logo [5];  [1]
  1. Univ. of Tennessee, Knoxville, TN (United States)
  2. National Energy Technology Lab. (NETL), Albany, OR (United States); AECOM, Albany, OR (United States)
  3. Univ. of Tennessee, Knoxville, TN (United States); Univ. of Science and Technology Beijing (China)
  4. National Energy Technology Lab. (NETL), Albany, OR (United States)
  5. Univ. of Science and Technology Beijing (China)
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Albany, OR (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1419603
Alternate Identifier(s):
OSTI ID: 1482332
Grant/Contract Number:  
FE-0008855; FE-0024054; CMMI-1100080; DMR-1611180
Resource Type:
Journal Article: Published Article
Journal Name:
Entropy
Additional Journal Information:
Journal Volume: 18; Journal Issue: 9; Journal ID: ISSN 1099-4300
Publisher:
MDPI
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Feng, Rui, Gao, Michael, Lee, Chanho, Mathes, Michael, Zuo, Tingting, Chen, Shuying, Hawk, Jeffrey, Zhang, Yong, and Liaw, Peter. Design of Light-Weight High-Entropy Alloys. United States: N. p., 2016. Web. doi:10.3390/e18090333.
Feng, Rui, Gao, Michael, Lee, Chanho, Mathes, Michael, Zuo, Tingting, Chen, Shuying, Hawk, Jeffrey, Zhang, Yong, & Liaw, Peter. Design of Light-Weight High-Entropy Alloys. United States. doi:10.3390/e18090333.
Feng, Rui, Gao, Michael, Lee, Chanho, Mathes, Michael, Zuo, Tingting, Chen, Shuying, Hawk, Jeffrey, Zhang, Yong, and Liaw, Peter. Tue . "Design of Light-Weight High-Entropy Alloys". United States. doi:10.3390/e18090333.
@article{osti_1419603,
title = {Design of Light-Weight High-Entropy Alloys},
author = {Feng, Rui and Gao, Michael and Lee, Chanho and Mathes, Michael and Zuo, Tingting and Chen, Shuying and Hawk, Jeffrey and Zhang, Yong and Liaw, Peter},
abstractNote = {High-entropy alloys (HEAs) are a new class of solid-solution alloys that have attracted worldwide attention for their outstanding properties. Owing to the demand from transportation and defense industries, light-weight HEAs have also garnered widespread interest from scientists for use as potential structural materials. Great efforts have been made to study the phase-formation rules of HEAs to accelerate and refine the discovery process. In this paper, many proposed solid-solution phase-formation rules are assessed, based on a series of known and newly-designed light-weight HEAs. The results indicate that these empirical rules work for most compositions but also fail for several alloys. Light-weight HEAs often involve the additions of Al and/or Ti in great amounts, resulting in large negative enthalpies for forming solid-solution phases and/or intermetallic compounds. Accordingly, these empirical rules need to be modified with the new experimental data. In contrast, CALPHAD (acronym of the calculation of phase diagrams) method is demonstrated to be an effective approach to predict the phase formation in HEAs as a function of composition and temperature. Future perspectives on the design of light-weight HEAs are discussed in light of CALPHAD modeling and physical metallurgy principles},
doi = {10.3390/e18090333},
journal = {Entropy},
number = 9,
volume = 18,
place = {United States},
year = {Tue Sep 13 00:00:00 EDT 2016},
month = {Tue Sep 13 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.3390/e18090333

Citation Metrics:
Cited by: 20 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes
journal, May 2004

  • Yeh, J.-W.; Chen, S.-K.; Lin, S.-J.
  • Advanced Engineering Materials, Vol. 6, Issue 5, p. 299-303
  • DOI: 10.1002/adem.200300567

Solid-Solution Phase Formation Rules for Multi-component Alloys
journal, June 2008

  • Zhang, Y.; Zhou, Y.?J.; Lin, J.?P.
  • Advanced Engineering Materials, Vol. 10, Issue 6, p. 534-538
  • DOI: 10.1002/adem.200700240