skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantification of flexoelectricity in PbTiO 3/SrTiO 3 superlattice polar vortices using machine learning and phase-field modeling

Abstract

Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO 3 /SrTiO 3 superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO 3 and SrTiO 3. Here, our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [3];  [1]; ORCiD logo [3];  [4]; ORCiD logo [5];  [3]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science (CNMS), Inst. for Functional Imaging of Materials and Center for Nanophase Materials Science
  2. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  3. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering
  4. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  5. Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1419453
Grant/Contract Number:
AC02-05CH11231; SC0012375; GBMF5307; W911NF-14-1-0104
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Structural properties; Ferroelectrics and multiferroics; Coarse-grained models

Citation Formats

Li, Q., Nelson, C. T., Hsu, S. -L., Damodaran, A. R., Li, L. -L., Yadav, A. K., McCarter, M., Martin, L. W., Ramesh, R., and Kalinin, S. V.. Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01733-8.
Li, Q., Nelson, C. T., Hsu, S. -L., Damodaran, A. R., Li, L. -L., Yadav, A. K., McCarter, M., Martin, L. W., Ramesh, R., & Kalinin, S. V.. Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling. United States. doi:10.1038/s41467-017-01733-8.
Li, Q., Nelson, C. T., Hsu, S. -L., Damodaran, A. R., Li, L. -L., Yadav, A. K., McCarter, M., Martin, L. W., Ramesh, R., and Kalinin, S. V.. Mon . "Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling". United States. doi:10.1038/s41467-017-01733-8. https://www.osti.gov/servlets/purl/1419453.
@article{osti_1419453,
title = {Quantification of flexoelectricity in PbTiO3/SrTiO3 superlattice polar vortices using machine learning and phase-field modeling},
author = {Li, Q. and Nelson, C. T. and Hsu, S. -L. and Damodaran, A. R. and Li, L. -L. and Yadav, A. K. and McCarter, M. and Martin, L. W. and Ramesh, R. and Kalinin, S. V.},
abstractNote = {Flexoelectricity refers to electric polarization generated by heterogeneous mechanical strains, namely strain gradients, in materials of arbitrary crystal symmetries. Despite more than 50 years of work on this effect, an accurate identification of its coupling strength remains an experimental challenge for most materials, which impedes its wide recognition. Here, we show the presence of flexoelectricity in the recently discovered polar vortices in PbTiO3 /SrTiO3 superlattices based on a combination of machine-learning analysis of the atomic-scale electron microscopy imaging data and phenomenological phase-field modeling. By scrutinizing the influence of flexocoupling on the global vortex structure, we match theory and experiment using computer vision methodologies to determine the flexoelectric coefficients for PbTiO3 and SrTiO3. Here, our findings highlight the inherent, nontrivial role of flexoelectricity in the generation of emergent complex polarization morphologies and demonstrate a viable approach to delineating this effect, conducive to the deeper exploration of both topics.},
doi = {10.1038/s41467-017-01733-8},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {Mon Nov 13 00:00:00 EST 2017},
month = {Mon Nov 13 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share: