skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface tension models for a multi-material ALE code with AMR

Abstract

A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.

Authors:
 [1];  [2];  [2];  [3];  [3];  [3];  [3];  [3]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Google, Mountain View, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1419392
Alternate Identifier(s):
OSTI ID: 1430982
Report Number(s):
LLNL-JRNL-748075
Journal ID: ISSN 0045-7930
Grant/Contract Number:
AC52-07NA27344; AC02-05CH11231
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Computers and Fluids
Additional Journal Information:
Journal Volume: 151; Journal Issue: C; Journal ID: ISSN 0045-7930
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE; 42 ENGINEERING; Surface tension; ALE; AMR; Multi-physics modeling; Interface reconstruction; Lithography

Citation Formats

Liu, Wangyi, Koniges, Alice, Gott, Kevin, Eder, David, Barnard, John, Friedman, Alex, Masters, Nathan, and Fisher, Aaron. Surface tension models for a multi-material ALE code with AMR. United States: N. p., 2017. Web. doi:10.1016/j.compfluid.2017.01.016.
Liu, Wangyi, Koniges, Alice, Gott, Kevin, Eder, David, Barnard, John, Friedman, Alex, Masters, Nathan, & Fisher, Aaron. Surface tension models for a multi-material ALE code with AMR. United States. doi:10.1016/j.compfluid.2017.01.016.
Liu, Wangyi, Koniges, Alice, Gott, Kevin, Eder, David, Barnard, John, Friedman, Alex, Masters, Nathan, and Fisher, Aaron. Thu . "Surface tension models for a multi-material ALE code with AMR". United States. doi:10.1016/j.compfluid.2017.01.016.
@article{osti_1419392,
title = {Surface tension models for a multi-material ALE code with AMR},
author = {Liu, Wangyi and Koniges, Alice and Gott, Kevin and Eder, David and Barnard, John and Friedman, Alex and Masters, Nathan and Fisher, Aaron},
abstractNote = {A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, the height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.},
doi = {10.1016/j.compfluid.2017.01.016},
journal = {Computers and Fluids},
number = C,
volume = 151,
place = {United States},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.compfluid.2017.01.016

Save / Share:
  • A number of surface tension models have been implemented in a 3D multi-physics multi-material code, ALE–AMR, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR). ALE–AMR is unique in its ability to model hot radiating plasmas, cold fragmenting solids, and most recently, the deformation of molten material. The surface tension models implemented include a diffuse interface approach with special numerical techniques to remove parasitic flow and a height function approach in conjunction with a volume-fraction interface reconstruction package. These surface tension models are benchmarked with a variety of test problems. In conclusion, based on the results, themore » height function approach using volume fractions was chosen to simulate droplet dynamics associated with extreme ultraviolet (EUV) lithography.« less
  • Here, we present a novel method for the solution of the diffusion equation on a composite AMR mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with the diffusion solver and associated physics packages yield 2nd order convergence in the L 2 norm.
  • Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models.more » However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.« less
  • Fragmentation is a fundamental process that naturally spans micro to macroscopic scales. Recent advances in algorithms, computer simulations, and hardware enable us to connect the continuum to microstructural regimes in a real simulation through a heterogeneous multiscale mathematical model. We apply this model to the problem of predicting how targets in the NIF chamber dismantle, so that optics and diagnostics can be protected from damage. The mechanics of the initial material fracture depend on the microscopic grain structure. In order to effectively simulate the fragmentation, this process must be modeled at the subgrain level with computationally expensive crystal plasticity models.more » However, there are not enough computational resources to model the entire NIF target at this microscopic scale. In order to accomplish these calculations, a hierarchical material model (HMM) is being developed. The HMM will allow fine-scale modeling of the initial fragmentation using computationally expensive crystal plasticity, while the elements at the mesoscale can use polycrystal models, and the macroscopic elements use analytical flow stress models. The HMM framework is built upon an adaptive mesh refinement (AMR) capability. We present progress in implementing the HMM in the NIF-ALE-AMR code. Additionally, we present test simulations relevant to NIF targets.« less
  • In this paper we compare the performance of different methods for reconstructing interfaces in multi-material compressible flow simulations. The methods compared are a material-order-dependent Volume-of-Fluid (VOF) method, a material-order-independent VOF method based on power diagram partitioning of cells and the Moment-of-Fluid method (MOF). We demonstrate that the MOF method provides the most accurate tracking of interfaces, followed by the VOF method with the right material ordering. The material-order-independent VOF method performs some-what worse than the above two while the solutions with VOF using the wrong material order are considerably worse.