skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Equation of state and shock compression of warm dense sodium—A first-principles study

Abstract

As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm 3 and 10 3–1.29×10 8 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that are consistent with DFT-MD at intermediate temperatures of 2×10 6 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 10 7 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections,more » and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [2]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1418956
Alternate Identifier(s):
OSTI ID: 1361781
Report Number(s):
LLNL-JRNL-736349
Journal ID: ISSN 0021-9606; JCPSA6; TRN: US1801318
Grant/Contract Number:  
AC52-07NA27344; SC0010517; SC0016248
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 146; Journal Issue: 7; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Zhang, Shuai, Driver, Kevin P., Soubiran, Francois, and Militzer, Burkhard. Equation of state and shock compression of warm dense sodium—A first-principles study. United States: N. p., 2017. Web. doi:10.1063/1.4976559.
Zhang, Shuai, Driver, Kevin P., Soubiran, Francois, & Militzer, Burkhard. Equation of state and shock compression of warm dense sodium—A first-principles study. United States. doi:10.1063/1.4976559.
Zhang, Shuai, Driver, Kevin P., Soubiran, Francois, and Militzer, Burkhard. Tue . "Equation of state and shock compression of warm dense sodium—A first-principles study". United States. doi:10.1063/1.4976559. https://www.osti.gov/servlets/purl/1418956.
@article{osti_1418956,
title = {Equation of state and shock compression of warm dense sodium—A first-principles study},
author = {Zhang, Shuai and Driver, Kevin P. and Soubiran, Francois and Militzer, Burkhard},
abstractNote = {As one of the simple alkali metals, sodium has been of fundamental interest for shock physics experiments, but knowledge of its equation of state (EOS) in hot, dense regimes is not well known. By combining path integral Monte Carlo (PIMC) results for partially ionized states at high temperatures and density functional theory molecular dynamics (DFT-MD) results at lower temperatures, we have constructed a coherent equation of state for sodium over a wide density-temperature range of 1.93-11.60 g/cm3 and 103–1.29×108 K. We find that a localized, Hartree-Fock nodal structure in PIMC yields pressures and internal energies that are consistent with DFT-MD at intermediate temperatures of 2×106 K. Since PIMC and DFT-MD provide a first-principles treatment of electron shell and excitation effects, we are able to identify two compression maxima in the shock Hugoniot curve corresponding to K-shell and L-shell ionization. Our Hugoniot curves provide a benchmark for widely used EOS models: SESAME, LEOS, and Purgatorio. Due to the low ambient density, sodium has an unusually high first compression maximum along the shock Hugoniot curve. At beyond 107 K, we show that the radiation effect leads to very high compression along the Hugoniot curve, surpassing relativistic corrections, and observe an increasing deviation of the shock and particle velocities from a linear relation. Here, we also compute the temperature-density dependence of thermal and pressure ionization processes.},
doi = {10.1063/1.4976559},
journal = {Journal of Chemical Physics},
issn = {0021-9606},
number = 7,
volume = 146,
place = {United States},
year = {2017},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Characterization of the State of Hydrogen at High Temperature and Density
journal, January 1999

  • Militzer, B.; Magro, W.; Ceperley, D.
  • Contributions to Plasma Physics, Vol. 39, Issue 1-2
  • DOI: 10.1002/ctpp.2150390137

First-principles equation of state and electronic properties of warm dense oxygen
journal, October 2015

  • Driver, K. P.; Soubiran, F.; Zhang, Shuai
  • The Journal of Chemical Physics, Vol. 143, Issue 16
  • DOI: 10.1063/1.4934348

Equation of State for Sodium Metal
journal, February 1968


Importance of finite-temperature exchange correlation for warm dense matter calculations
journal, June 2016


First Principles Calculations of Shock Compressed Fluid Helium
journal, October 2006


Equations of state for two alkali metals at high temperatures
journal, February 2008


Path integral Monte Carlo simulation of the low-density hydrogen plasma
journal, May 2001


Electronic and structural transitions in dense liquid sodium
journal, September 2007

  • Raty, Jean-Yves; Schwegler, Eric; Bonev, Stanimir A.
  • Nature, Vol. 449, Issue 7161
  • DOI: 10.1038/nature06123

Melting of Na at high pressure from ab initio calculations
journal, April 2008


Calculation of a Deuterium Double Shock Hugoniot from Ab Initio Simulations
journal, December 2001


Plastic ablator and hydrodynamic instabilities: A first-principles set of microscopic coefficients
journal, August 2012


Computer simulation of liquid metals
journal, December 2013


Application of the embedded atom model to liquid metals: Liquid sodium
journal, August 2009


Multiphase equation of state for carbon addressing high pressures and temperatures
journal, June 2014


Electrical and thermal conductivity of liquid sodium from first-principles calculations
journal, August 2011


Path Integral Monte Carlo Calculation of the Deuterium Hugoniot
journal, August 2000


Computation of the high temperature Coulomb density matrix in periodic boundary conditions
journal, July 2016


Ab initio analysis of plasmon dispersion in sodium under pressure
journal, February 2014


Hugoniot Equation of State of Alkali Metals
journal, December 1966

  • Ehrenfeld, J.; Krimsky, S.; Selvitella, J.
  • Journal of Applied Physics, Vol. 37, Issue 13
  • DOI: 10.1063/1.1708127

Path integral Monte Carlo simulations of warm dense sodium
journal, December 2016


High-Pressure Electrides: The Chemical Nature of Interstitial Quasiatoms
journal, March 2015

  • Miao, Mao-sheng; Hoffmann, Roald
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/jacs.5b00242

P , V , E , T Equation of State of Metallic Sodium in the Classical Region of Temperature
journal, June 1967


Transparent dense sodium
journal, March 2009

  • Ma, Yanming; Eremets, Mikhail; Oganov, Artem R.
  • Nature, Vol. 458, Issue 7235
  • DOI: 10.1038/nature07786

Dense Plasma Effects on Nuclear Reaction Rates
journal, January 2004


Dynamic compression of dense oxide (Gd3Ga5O12) from 0.4 to 2.6 TPa: Universal Hugoniot of fluid metals
journal, May 2016

  • Ozaki, N.; Nellis, W. J.; Mashimo, T.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26000

Extension of liquid-metal theory to dense partially ionized plasmas
journal, April 1980


What Do We (Not) Know Theoretically about Solar Neutrino Fluxes?
journal, March 2004


Purgatorio—a new implementation of the Inferno algorithm
journal, May 2006

  • Wilson, B.; Sonnad, V.; Sterne, P.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.053

A new quotidian equation of state (QEOS) for hot dense matter
journal, January 1988

  • More, R. M.; Warren, K. H.; Young, D. A.
  • Physics of Fluids, Vol. 31, Issue 10
  • DOI: 10.1063/1.866963

Microscopic Origins of the Anomalous Melting Behavior of Sodium under High Pressure
journal, March 2012


Pressure-volume relations for the alkali metals from shock-wave measurements
journal, March 1965


Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure
journal, November 2016


A new global equation of state model for hot, dense matter
journal, September 1995

  • Young, David A.; Corey, Ellen M.
  • Journal of Applied Physics, Vol. 78, Issue 6
  • DOI: 10.1063/1.359955

Electronic dynamics and plasmons of sodium under compression
journal, December 2011

  • Mao, H. -K.; Ding, Y.; Xiao, Y.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 51
  • DOI: 10.1073/pnas.1116930108

Hydrogen–Helium Mixtures at High Pressure
journal, June 2005


Anomalous optical and electronic properties of dense sodium
journal, April 2009

  • Lazicki, A.; Goncharov, A. F.; Struzhkin, V. V.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 16
  • DOI: 10.1073/pnas.0902062106

All-Electron Path Integral Monte Carlo Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas
journal, March 2012


Self-interaction correction to density-functional approximations for many-electron systems
journal, May 1981


Sodium under pressure: bcc to fcc structural transition and pressure-volume relation to 100 GPa
journal, May 2002


Lattice dynamics and the phase diagram of sodium at high pressures and temperatures from ab initio calculations
journal, July 2011

  • Maksimov, E. G.; Lepeshkin, S. V.; Magnitskaya, M. V.
  • Crystallography Reports, Vol. 56, Issue 4
  • DOI: 10.1134/s1063774511040134

Equation of State of the Hydrogen Plasma by Path Integral Monte Carlo Simulation
journal, October 1994


Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar
journal, January 2012

  • Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Prakapenka, Vitali B.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2160

Effects of Inner-Core 2 p States on Melting Curve and Structure of Dense Sodium at High Pressures
journal, June 2008

  • Yamane, Aki; Shimojo, Fuyuki; Hoshino, Kozo
  • Journal of the Physical Society of Japan, Vol. 77, Issue 6
  • DOI: 10.1143/jpsj.77.064603

Equilibrium contact probabilities in dense plasmas
journal, April 2005


Melting of sodium under high pressure. An ab-initio study
conference, January 2015

  • González, D. J.; González, L. E.
  • PROCEEDINGS FOR THE XV LIQUID AND AMORPHOUS METALS (LAM-15) INTERNATIONAL CONFERENCE, AIP Conference Proceedings
  • DOI: 10.1063/1.4928259

Plasmons in Sodium under Pressure: Increasing Departure from Nearly Free-Electron Behavior
journal, August 2011


Comment on ``Hugoniot Equation of State of Alkali Metals''
journal, September 1967

  • Hickey, Daniel P.
  • Journal of Applied Physics, Vol. 38, Issue 10
  • DOI: 10.1063/1.1709072

Exotic high pressure behavior of light alkali metals, lithium and sodium
journal, April 2011


Atomic Theory of the λ Transition in Helium
journal, September 1953


Simulations of dense atomic hydrogen in the Wigner crystal phase
journal, September 2006

  • Militzer, Burkhard; Graham, Rebekah L.
  • Journal of Physics and Chemistry of Solids, Vol. 67, Issue 9-10
  • DOI: 10.1016/j.jpcs.2006.05.015

Equation of state of sodium
journal, March 1984

  • Fritz, J. N.; Olinger, Bart
  • The Journal of Chemical Physics, Vol. 80, Issue 6
  • DOI: 10.1063/1.447035

Structure of sodium above 100 GPa by single-crystal x-ray diffraction
journal, October 2007

  • McMahon, M. I.; Gregoryanz, E.; Lundegaard, L. F.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 44
  • DOI: 10.1073/pnas.0709309104

Impact compression of alkali metals: Computer-aided simulation
journal, September 2013


Development of Path Integral Monte Carlo Simulations with Localized Nodal Surfaces for Second-Row Elements
journal, October 2015


Fast and Accurate Quantum Molecular Dynamics of Dense Plasmas Across Temperature Regimes
journal, October 2014


Gigabar material properties experiments on nif and omega
conference, January 2012

  • Swift, Damian; Hawreliak, James; Braun, David
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3686321

Structural Diversity of Sodium
journal, May 2008


Shock Hugoniot measurements of CH at Gbar pressures at the NIF
journal, March 2016


High-temperature resistivity of shocked liquid sodium at pressures up to 230 GPa
journal, March 2011


Theoretical high-pressure equations of state and phase diagrams of the alkali metals
journal, January 1984


First-principles prediction of the softening of the silicon shock Hugoniot curve
journal, September 2016


First-principles equation of state calculations of warm dense nitrogen
journal, February 2016


Fermion nodes
journal, June 1991

  • Ceperley, D. M.
  • Journal of Statistical Physics, Vol. 63, Issue 5-6
  • DOI: 10.1007/bf01030009