skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low Temperature Metal Coating Method Final Report CRADA No. TSB-1155-95

Abstract

A new metal coating method, cidled KEM (kinetic energy metal.lization), demonstrated in the laboratory by lnovati, utilized fast-moving solid particIes entrained in a gas that are caused to fiow through a nozzIe to effect particle deposition on metal surfaces at room temperature conditions. This method (US Patent 5,795,626) was an attractive and viabIe alternative to the currentIy available high-temperature coating methods avaiIabIe. Since it differs significantly from existing metal coating technologies, a brief description of the method is incIuded here. The proposed method, KEM, achieves cohesive and adhesive metallurgical bonding through the high-speed coUision of powder with a substrate and the subsequent discharge of electrical charge at the substrate. Such coating is effected by entraining metal powder in a gas and accelerating this mixture through a supersonic nozzle. The gas/powder is directed towards the substrate to be coated. Collisions occur, initiaIly between the powder and the substrate, and, as the first Iayer of the coating forms, between the powder and the coating. During these collisions the powder is rapidly deformed, causing the exposure of fresh (oxide free) active metal surface. When these’active surfaces contact one another, they agglomerate and form true metaIIurgicaI bonds. The resultant coating has Iow porosity andmore » high adhesive and cohesive strength. The formation of metaIIurgicaI bonds is potentiated by the discharge of electrical energy. This electrical energy is the result of triboeIectric charging of the particIes during acceleration and transit to the nozzIe. An advantage of the method is that it does not raise the temperature of the powder being appLiedor that of the substrate. Consequently, materials sensitive to high temperature may be applied without changing Me properties of the materkd or substrate.« less

Authors:
 [1];  [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Innovative Technology, Inc., Santa Barbara, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1418946
Report Number(s):
LLNL-TR-745074
DOE Contract Number:
AC52-07NA27344
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Kang, Sang-Wook, and Gabel, Howard. Low Temperature Metal Coating Method Final Report CRADA No. TSB-1155-95. United States: N. p., 2018. Web. doi:10.2172/1418946.
Kang, Sang-Wook, & Gabel, Howard. Low Temperature Metal Coating Method Final Report CRADA No. TSB-1155-95. United States. doi:10.2172/1418946.
Kang, Sang-Wook, and Gabel, Howard. Fri . "Low Temperature Metal Coating Method Final Report CRADA No. TSB-1155-95". United States. doi:10.2172/1418946. https://www.osti.gov/servlets/purl/1418946.
@article{osti_1418946,
title = {Low Temperature Metal Coating Method Final Report CRADA No. TSB-1155-95},
author = {Kang, Sang-Wook and Gabel, Howard},
abstractNote = {A new metal coating method, cidled KEM (kinetic energy metal.lization), demonstrated in the laboratory by lnovati, utilized fast-moving solid particIes entrained in a gas that are caused to fiow through a nozzIe to effect particle deposition on metal surfaces at room temperature conditions. This method (US Patent 5,795,626) was an attractive and viabIe alternative to the currentIy available high-temperature coating methods avaiIabIe. Since it differs significantly from existing metal coating technologies, a brief description of the method is incIuded here. The proposed method, KEM, achieves cohesive and adhesive metallurgical bonding through the high-speed coUision of powder with a substrate and the subsequent discharge of electrical charge at the substrate. Such coating is effected by entraining metal powder in a gas and accelerating this mixture through a supersonic nozzle. The gas/powder is directed towards the substrate to be coated. Collisions occur, initiaIly between the powder and the substrate, and, as the first Iayer of the coating forms, between the powder and the coating. During these collisions the powder is rapidly deformed, causing the exposure of fresh (oxide free) active metal surface. When these’active surfaces contact one another, they agglomerate and form true metaIIurgicaI bonds. The resultant coating has Iow porosity and high adhesive and cohesive strength. The formation of metaIIurgicaI bonds is potentiated by the discharge of electrical energy. This electrical energy is the result of triboeIectric charging of the particIes during acceleration and transit to the nozzIe. An advantage of the method is that it does not raise the temperature of the powder being appLiedor that of the substrate. Consequently, materials sensitive to high temperature may be applied without changing Me properties of the materkd or substrate.},
doi = {10.2172/1418946},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jan 19 00:00:00 EST 2018},
month = {Fri Jan 19 00:00:00 EST 2018}
}

Technical Report:

Save / Share: