skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Broadband (0-4 Hz) Ground Motions for a Magnitude 7.0 Hayward Fault Earthquake With Three-Dimensional Structure and Topography: An M 7 Hayward Fault Earthquake

Abstract

We performed fully deterministic broadband (0–4 Hz) high-performance computing ground motion simulations of a magnitude 7.0 scenario earthquake on the Hayward Fault (HF) in the San Francisco Bay Area of Northern California. Simulations consider average one-dimensional (1-D) and three-dimensional (3-D) anelastic structure with flat and topographic free surfaces. Ground motion intensity measures (GMIMs) for the 3-D model display dramatic differences across the HF due to geologic heterogeneity, with low wave speeds east of the HF amplifying motions. The median GMIMs agree well with Ground Motion Prediction Equations (GMPEs); however, the 3-D model generates more scatter than the 1-D model. Ratios of 3-D/1-D GMIMs from the same source allow isolation of path and site effects for the 3-D model. These ratios show remarkably similar trends as site-specific factors for the GMPE predictions, suggesting that wave propagation effects in our 3-D simulations are on average consistent with empirical data.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [2];  [3]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Oakland, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC)
OSTI Identifier:
1418697
Alternate Identifier(s):
OSTI ID: 1418699; OSTI ID: 1458635; OSTI ID: 1485076
Report Number(s):
LLNL-JRNL-741500
Journal ID: ISSN 0094-8276; 896057
Grant/Contract Number:  
AC52-07NA27344; 17-SC-20-SC; AC02-05CH11231
Resource Type:
Journal Article: Published Article
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 45; Journal Issue: 2; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; Hayward Fault; earthquake strong motion; high-performance computing high-performance computing simulation

Citation Formats

Rodgers, Arthur J., Pitarka, Arben, Petersson, N. Anders, Sjogreen, Bjorn, and McCallen, David B. Broadband (0-4 Hz) Ground Motions for a Magnitude 7.0 Hayward Fault Earthquake With Three-Dimensional Structure and Topography: An M 7 Hayward Fault Earthquake. United States: N. p., 2018. Web. doi:10.1002/2017GL076505.
Rodgers, Arthur J., Pitarka, Arben, Petersson, N. Anders, Sjogreen, Bjorn, & McCallen, David B. Broadband (0-4 Hz) Ground Motions for a Magnitude 7.0 Hayward Fault Earthquake With Three-Dimensional Structure and Topography: An M 7 Hayward Fault Earthquake. United States. doi:10.1002/2017GL076505.
Rodgers, Arthur J., Pitarka, Arben, Petersson, N. Anders, Sjogreen, Bjorn, and McCallen, David B. Mon . "Broadband (0-4 Hz) Ground Motions for a Magnitude 7.0 Hayward Fault Earthquake With Three-Dimensional Structure and Topography: An M 7 Hayward Fault Earthquake". United States. doi:10.1002/2017GL076505.
@article{osti_1418697,
title = {Broadband (0-4 Hz) Ground Motions for a Magnitude 7.0 Hayward Fault Earthquake With Three-Dimensional Structure and Topography: An M 7 Hayward Fault Earthquake},
author = {Rodgers, Arthur J. and Pitarka, Arben and Petersson, N. Anders and Sjogreen, Bjorn and McCallen, David B.},
abstractNote = {We performed fully deterministic broadband (0–4 Hz) high-performance computing ground motion simulations of a magnitude 7.0 scenario earthquake on the Hayward Fault (HF) in the San Francisco Bay Area of Northern California. Simulations consider average one-dimensional (1-D) and three-dimensional (3-D) anelastic structure with flat and topographic free surfaces. Ground motion intensity measures (GMIMs) for the 3-D model display dramatic differences across the HF due to geologic heterogeneity, with low wave speeds east of the HF amplifying motions. The median GMIMs agree well with Ground Motion Prediction Equations (GMPEs); however, the 3-D model generates more scatter than the 1-D model. Ratios of 3-D/1-D GMIMs from the same source allow isolation of path and site effects for the 3-D model. These ratios show remarkably similar trends as site-specific factors for the GMPE predictions, suggesting that wave propagation effects in our 3-D simulations are on average consistent with empirical data.},
doi = {10.1002/2017GL076505},
journal = {Geophysical Research Letters},
issn = {0094-8276},
number = 2,
volume = 45,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1002/2017GL076505

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Computational domain covering the central San Francisco Bay Area and showing the shear wave speed (vS) at the surface (color bar) and topographic relief. Also shown are the extent of the HF rupture (white line) and locations/features mentioned in the text (SBP = San Pablo Bay, R =more » Richmond, B = Berkeley, Or = Orinda, O = Oakland, CRO = Coast Ranges Ophiolite, SL = San Leandro, SLB = San Leandro Basin, CV = Castro Valley, H = Hayward, F = Fremont, D-P = DublinPleasanton, LV = Livermore Valley, DR = Diablo Range, MD =Mount Diablo, SCV = Santa Clara Valley, MH =Marin Highlands). (top left inset) Orientationmap showing domain in map view. (left inset) VS profiles at Orinda (cyan) and Oakland (blue) along with the 1-D model (black). (bottom inset) Slip distribution for the rupture model plotted parallel to the HF, along with hypocenter (green star) and time-to-rupture contours (2 s intervals).« less

Save / Share:

Works referenced in this record:

Ground‐Motion Simulation and Validation of the 2008 Chino Hills, California, Earthquake
journal, February 2013

  • Taborda, Ricardo; Bielak, Jacobo
  • Bulletin of the Seismological Society of America, Vol. 103, Issue 1
  • DOI: 10.1785/0120110325

Moderate Earthquake Ground-Motion Validation in the San Francisco Bay Area
journal, March 2010

  • Kim, A.; Dreger, D. S.; Larsen, S.
  • Bulletin of the Seismological Society of America, Vol. 100, Issue 2
  • DOI: 10.1785/0120090076

Quantitative Comparison of Four Numerical Predictions of 3D Ground Motion in the Grenoble Valley, France
journal, July 2010

  • Chaljub, E.; Moczo, P.; Tsuno, S.
  • Bulletin of the Seismological Society of America, Vol. 100, Issue 4
  • DOI: 10.1785/0120090052

Slip in the 1868 Hayward earthquake from the analysis of historical triangulation data
journal, July 1996

  • Yu, Ellen; Segall, Paul
  • Journal of Geophysical Research: Solid Earth, Vol. 101, Issue B7
  • DOI: 10.1029/96JB00806

Kinematic Ground‐Motion Simulations on Rough Faults Including Effects of 3D Stochastic Velocity Perturbations
journal, August 2016

  • Graves, Robert; Pitarka, Arben
  • Bulletin of the Seismological Society of America, Vol. 106, Issue 5
  • DOI: 10.1785/0120160088

TeraShake2: Spontaneous Rupture Simulations of Mw 7.7 Earthquakes on the Southern San Andreas Fault
journal, June 2008

  • Olsen, K. B.; Day, S. M.; Minster, J. B.
  • Bulletin of the Seismological Society of America, Vol. 98, Issue 3
  • DOI: 10.1785/0120070148

San Andreas Fault Zone, California: M >=5.5 Earthquake History
journal, October 2002

  • Toppozada, T. R.
  • Bulletin of the Seismological Society of America, Vol. 92, Issue 7
  • DOI: 10.1785/0120000614

The ShakeOut earthquake scenario: Verification of three simulation sets
journal, January 2010


Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method
journal, October 2015


Ground-Motion Modeling of Hayward Fault Scenario Earthquakes, Part II: Simulation of Long-Period and Broadband Ground Motions
journal, December 2010

  • Aagaard, B. T.; Graves, R. W.; Rodgers, A.
  • Bulletin of the Seismological Society of America, Vol. 100, Issue 6
  • DOI: 10.1785/0120090379

A Fourth Order Accurate Finite Difference Scheme for the Elastic Wave Equation in Second Order Formulation
journal, September 2011


Summary of the ASK14 Ground Motion Relation for Active Crustal Regions
journal, August 2014

  • Abrahamson, Norman A.; Silva, Walter J.; Kamai, Ronnie
  • Earthquake Spectra, Vol. 30, Issue 3
  • DOI: 10.1193/070913EQS198M

Super-Grid Modeling of the Elastic Wave Equation in Semi-Bounded Domains
journal, October 2014


Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method
journal, December 2014

  • Graves, R.; Pitarka, A.
  • Seismological Research Letters, Vol. 86, Issue 1
  • DOI: 10.1785/0220140101

Stable and Efficient Modeling of Anelastic Attenuation in Seismic Wave Propagation
journal, July 2012


Model for Basin Effects on Long-Period Response Spectra in Southern California
journal, February 2008

  • Day, Steven M.; Graves, Robert; Bielak, Jacobo
  • Earthquake Spectra, Vol. 24, Issue 1
  • DOI: 10.1193/1.2857545

Adding Fling Effects to Processed Ground-Motion Time Histories
journal, July 2014

  • Kamai, R.; Abrahamson, N.; Graves, R.
  • Bulletin of the Seismological Society of America, Vol. 104, Issue 4
  • DOI: 10.1785/0120130272

The SCEC Broadband Platform Validation Exercise: Methodology for Code Validation in the Context of Seismic-Hazard Analyses
journal, December 2014

  • Goulet, C. A.; Abrahamson, N. A.; Somerville, P. G.
  • Seismological Research Letters, Vol. 86, Issue 1
  • DOI: 10.1785/0220140104

Generic Mapping Tools: Improved Version Released
journal, November 2013

  • Wessel, Paul; Smith, Walter H. F.; Scharroo, Remko
  • Eos, Transactions American Geophysical Union, Vol. 94, Issue 45
  • DOI: 10.1002/2013EO450001

Modelling of wave propagation and attenuation in the Osaka sedimentary basin, western Japan, during the 2013 Awaji Island earthquake
journal, February 2016

  • Asano, Kimiyuki; Sekiguchi, Haruko; Iwata, Tomotaka
  • Geophysical Journal International, Vol. 204, Issue 3
  • DOI: 10.1093/gji/ggv543

Toward Exascale Earthquake Ground Motion Simulations for Near-Fault Engineering Analysis
journal, January 2017

  • Johansen, Hans; Rodgers, Arthur; Petersson, N. Anders
  • Computing in Science & Engineering, Vol. 19, Issue 5
  • DOI: 10.1109/MCSE.2017.3421558

Broadband Waveform Modeling of Moderate Earthquakes in the San Francisco Bay Area and Preliminary Assessment of the USGS 3D Seismic Velocity Model
journal, April 2008

  • Rodgers, A.; Petersson, N. A.; Nilsson, S.
  • Bulletin of the Seismological Society of America, Vol. 98, Issue 2
  • DOI: 10.1785/0120060407

Broadband simulations for M w 7.8 southern San Andreas earthquakes: Ground motion sensitivity to rupture speed
journal, January 2008

  • Graves, Robert W.; Aagaard, Brad T.; Hudnut, Kenneth W.
  • Geophysical Research Letters, Vol. 35, Issue 22
  • DOI: 10.1029/2008GL035750

Effects of Topography on Seismic-Wave Propagation: An Example from Northern Taiwan
journal, February 2009

  • Lee, S. -J.; Komatitsch, D.; Huang, B. -S.
  • Bulletin of the Seismological Society of America, Vol. 99, Issue 1
  • DOI: 10.1785/0120080020

Ground-Motion Modeling of the 1906 San Francisco Earthquake, Part II: Ground-Motion Estimates for the 1906 Earthquake and Scenario Events
journal, April 2008

  • Aagaard, B. T.; Brocher, T. M.; Dolenc, D.
  • Bulletin of the Seismological Society of America, Vol. 98, Issue 2
  • DOI: 10.1785/0120060410

�ber die partiellen Differenzengleichungen der mathematischen Physik
journal, December 1928

  • Courant, R.; Friedrichs, K.; Lewy, H.
  • Mathematische Annalen, Vol. 100, Issue 1
  • DOI: 10.1007/BF01448839

Sedimentary Basin Effects in Seattle, Washington: Ground-Motion Observations and 3D Simulations
journal, June 2009

  • Frankel, A.; Stephenson, W.; Carver, D.
  • Bulletin of the Seismological Society of America, Vol. 99, Issue 3
  • DOI: 10.1785/0120080203

Broadband Ground-Motion Simulation Using a Hybrid Approach
journal, September 2010

  • Graves, R. W.; Pitarka, A.
  • Bulletin of the Seismological Society of America, Vol. 100, Issue 5A
  • DOI: 10.1785/0120100057

Validation of the SCEC Broadband Platform V14.3 Simulation Methods Using Pseudospectral Acceleration Data
journal, December 2014

  • Dreger, D. S.; Beroza, G. C.; Day, S. M.
  • Seismological Research Letters, Vol. 86, Issue 1
  • DOI: 10.1785/0220140118

Simulated Ground Motion in Santa Clara Valley, California, and Vicinity from M>=6.7 Scenario Earthquakes
journal, June 2008

  • Harmsen, S.; Hartzell, S.; Liu, P.
  • Bulletin of the Seismological Society of America, Vol. 98, Issue 3
  • DOI: 10.1785/0120060230

Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes: SPECFEM3D Version 2.0 ‘Sesame’
journal, May 2011


ObsPy: a bridge for seismology into the scientific Python ecosystem
journal, January 2015


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.