skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Combinatorial Platform for Discovery of Nanocrystal-Ink Based Earth Abundant Element PV with Efficiency Greater than 20%

Abstract

(1) We successfully developed an ultrasonic spray coating system that can be used to deposit thin chalcogenide films with composition gradients. 4 publications under the contract have been published with the instrument. The instrument was used to reveal the effects of intrinsic composition and examine the effects of 25 different dopant elements. Surprisingly, doping with most elements had little to no effect on the quasi-Fermi level splitting of bare films. Ge and Li were explored in depth, and our best devices utilize lithium doping. (2) We developed a new model of absorption coefficients, that when combined with absolute intensity photoluminescence, yield the steady-state quasi-Fermi level splitting and a way to quantify the sub-bandgap absorption. This has resulted in 2 publications on the method, with another in preparation. This is a significant development that should impact other PV technologies. (3) We found that lithium doping has several beneficial effects on CZTSSe. It improves the open-circuit voltage, short circuit current, fill factor, and shunt resistance. By using scanning Kelvin probe microscopy (SKPM) and conductive AFM (along with device measurements, DLPC, and XPS), we discovered that lithium acts to increase the p-type doping in both the grain and grain boundaries (GBs). The effectmore » is stronger in the GBs and changes the direction of the electric field at the GB. In lithium doped devices, an electric field repels minority carrier electrons away from the GB. This resulted in a publication and the fabrication of 11.8% efficient devices from a DMSO-thiourea molecular ink. The mechanism of action is most likely due to the formation of LiCu, which inhibits the formation of the donor defect ZnCu. This reduces compensation and increases the net p-type doping. (4) By alloying with germanium, we have fabricated CZTGSSe devices with the best open-circuit voltage (relative the maximum theoretical open-circuit voltage for the bandgap) for any kesterite solar cell. The Voc/Voc,max is 63%, compared to 58% for the record efficiency cell from hydrazine. The origin of the increased voltage efficiency appears to be related to the conduction band off-set and the suppression of a deep defect (~0.8 eV), most likely due to CuSn, but SnZn or SnCu are also possible. All milestones and go/no-go metrics were met with exception of the device efficiency milestone (15% then 20%). However, under the contract, hydrazine-free CZTSSe device efficiencies increased from 7.2% at the start of the contract to 11.8% upon completion.« less

Authors:
 [1]
  1. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1417951
Report Number(s):
DOE-UW-5321
DOE Contract Number:
EE0005321
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Hillhouse, Hugh W. Combinatorial Platform for Discovery of Nanocrystal-Ink Based Earth Abundant Element PV with Efficiency Greater than 20%. United States: N. p., 2017. Web. doi:10.2172/1417951.
Hillhouse, Hugh W. Combinatorial Platform for Discovery of Nanocrystal-Ink Based Earth Abundant Element PV with Efficiency Greater than 20%. United States. doi:10.2172/1417951.
Hillhouse, Hugh W. Sun . "Combinatorial Platform for Discovery of Nanocrystal-Ink Based Earth Abundant Element PV with Efficiency Greater than 20%". United States. doi:10.2172/1417951. https://www.osti.gov/servlets/purl/1417951.
@article{osti_1417951,
title = {Combinatorial Platform for Discovery of Nanocrystal-Ink Based Earth Abundant Element PV with Efficiency Greater than 20%},
author = {Hillhouse, Hugh W.},
abstractNote = {(1) We successfully developed an ultrasonic spray coating system that can be used to deposit thin chalcogenide films with composition gradients. 4 publications under the contract have been published with the instrument. The instrument was used to reveal the effects of intrinsic composition and examine the effects of 25 different dopant elements. Surprisingly, doping with most elements had little to no effect on the quasi-Fermi level splitting of bare films. Ge and Li were explored in depth, and our best devices utilize lithium doping. (2) We developed a new model of absorption coefficients, that when combined with absolute intensity photoluminescence, yield the steady-state quasi-Fermi level splitting and a way to quantify the sub-bandgap absorption. This has resulted in 2 publications on the method, with another in preparation. This is a significant development that should impact other PV technologies. (3) We found that lithium doping has several beneficial effects on CZTSSe. It improves the open-circuit voltage, short circuit current, fill factor, and shunt resistance. By using scanning Kelvin probe microscopy (SKPM) and conductive AFM (along with device measurements, DLPC, and XPS), we discovered that lithium acts to increase the p-type doping in both the grain and grain boundaries (GBs). The effect is stronger in the GBs and changes the direction of the electric field at the GB. In lithium doped devices, an electric field repels minority carrier electrons away from the GB. This resulted in a publication and the fabrication of 11.8% efficient devices from a DMSO-thiourea molecular ink. The mechanism of action is most likely due to the formation of LiCu, which inhibits the formation of the donor defect ZnCu. This reduces compensation and increases the net p-type doping. (4) By alloying with germanium, we have fabricated CZTGSSe devices with the best open-circuit voltage (relative the maximum theoretical open-circuit voltage for the bandgap) for any kesterite solar cell. The Voc/Voc,max is 63%, compared to 58% for the record efficiency cell from hydrazine. The origin of the increased voltage efficiency appears to be related to the conduction band off-set and the suppression of a deep defect (~0.8 eV), most likely due to CuSn, but SnZn or SnCu are also possible. All milestones and go/no-go metrics were met with exception of the device efficiency milestone (15% then 20%). However, under the contract, hydrazine-free CZTSSe device efficiencies increased from 7.2% at the start of the contract to 11.8% upon completion.},
doi = {10.2172/1417951},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Dec 31 00:00:00 EST 2017},
month = {Sun Dec 31 00:00:00 EST 2017}
}

Technical Report:

Save / Share: