skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes

Abstract

One of the most important validations for a state-of-art Earth System Model (ESM) with respect to climate changes is the simulation of the climate evolution and abrupt climate change events in the Earth’s history of the last 21,000 years. However, one great challenge for model validation is that ESMs usually do not directly simulate geochemical variables that can be compared directly with past proxy records. In this proposal, we have met this challenge by developing the simulation capability of major isotopes in a state-of-art ESM, the Community Earth System Model (CESM), enabling us to make direct model-data comparison by comparing the model directly against proxy climate records. Our isotope-enabled ESM incorporates the capability of simulating key isotopes and geotracers, notably δ 18O, δD, δ 14C, and δ 13C, Nd and Pa/Th. The isotope-enabled ESM have been used to perform some simulations for the last 21000 years. The direct comparison of these simulations with proxy records has shed light on the mechanisms of important climate change events.

Authors:
 [1]
  1. Univ. of Wisconsin, Madison, WI (United States). Dept. of Atmospheric and Oceanic Sciences
Publication Date:
Research Org.:
Univ. of Wisconsin, Madison, WI (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1417902
Report Number(s):
14-09085
DOE Contract Number:
SC0006932
Resource Type:
Technical Report
Resource Relation:
Related Information: OSTI ID # for final technical report 1409085
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES

Citation Formats

Liu, Zhengyu. Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes. United States: N. p., 2018. Web. doi:10.2172/1417902.
Liu, Zhengyu. Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes. United States. doi:10.2172/1417902.
Liu, Zhengyu. 2018. "Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes". United States. doi:10.2172/1417902. https://www.osti.gov/servlets/purl/1417902.
@article{osti_1417902,
title = {Collaborative Project: Development of an Isotope-Enabled CESM for Testing Abrupt Climate Changes},
author = {Liu, Zhengyu},
abstractNote = {One of the most important validations for a state-of-art Earth System Model (ESM) with respect to climate changes is the simulation of the climate evolution and abrupt climate change events in the Earth’s history of the last 21,000 years. However, one great challenge for model validation is that ESMs usually do not directly simulate geochemical variables that can be compared directly with past proxy records. In this proposal, we have met this challenge by developing the simulation capability of major isotopes in a state-of-art ESM, the Community Earth System Model (CESM), enabling us to make direct model-data comparison by comparing the model directly against proxy climate records. Our isotope-enabled ESM incorporates the capability of simulating key isotopes and geotracers, notably δ18O, δD, δ14C, and δ13C, Nd and Pa/Th. The isotope-enabled ESM have been used to perform some simulations for the last 21000 years. The direct comparison of these simulations with proxy records has shed light on the mechanisms of important climate change events.},
doi = {10.2172/1417902},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2018,
month = 1
}

Technical Report:

Save / Share:
  • We have made significant landmarks in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). We have developed the simulation capability of the major isotopes in CESM. In particular, we have completed the implementation of the stable water isotopes (δ 18O, δD) into the components for the atmosphere, ocean, land surface, runoff transport, sea ice, and coupler. In addition, the carbon isotopes (abiotic and biotic radiocarbon, δ 13 C) have been implemented into the CESM ocean and land models, and long spinup simulations have been completed (Jahn et al., 2015). Furthermore, wemore » have added abiotic Neodymium to the CESM ocean model as a tracer of ocean circulation, also measured by the proxy data community. Fullycoupled simulations with the stable water isotopes and ocean radiocarbon are currently being run for the preindustrial and also the Last Glacial Maximum. We have secured 19 million core-hours on the NWSC Yellowstone supercomputer for 12 months. Together with some CESM Paleoclimate Working Group CSL Yellowstone core hours, we are guaranteed sufficient computing for the spin-up experiments and deglaciation simulations for 21 to 15ka.« less
  • The objective of the project is to develop strategies for better representing scientific sensibilities within statistical measures of model skill that then can be used within a Bayesian statistical framework for data-driven climate model development and improved measures of model scientific uncertainty. One of the thorny issues in model evaluation is quantifying the effect of biases on climate projections. While any bias is not desirable, only those biases that affect feedbacks affect scatter in climate projections. The effort at the University of Texas is to analyze previously calculated ensembles of CAM3.1 with perturbed parameters to discover how biases affect projectionsmore » of global warming. The hypothesis is that compensating errors in the control model can be identified by their effect on a combination of processes and that developing metrics that are sensitive to dependencies among state variables would provide a way to select version of climate models that may reduce scatter in climate projections. Gabriel Huerta at the University of New Mexico is responsible for developing statistical methods for evaluating these field dependencies. The UT effort will incorporate these developments into MECS, which is a set of python scripts being developed at the University of Texas for managing the workflow associated with data-driven climate model development over HPC resources. This report reflects the main activities at the University of New Mexico where the PI (Huerta) and the Postdocs (Nosedal, Hattab and Karki) worked on the project.« less
  • We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completedmore » many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.« less
  • In this project we analyze climate simulations using the Community Earth System Model (CESM) in order to determine the modeled response and sensitivity to horizontal resolution. Simple aqua-planet configurations were used to provide a clean comparison of the response to resolution in CESM. This enables us to easily examine all aspects of the model sensitivity to resolution including mean quantities, variability and physical parameterization tendencies: the chief reflection of resolution sensitivity. An extension to the global resolution sensitivity study is the examination of regional grid refinement where resolution changes are prescribed in a single global simulation. We examine the relevancemore » of the global resolution sensitivity results as applied to these regional refinement simulations. In particular we examine how variations in the grid resolution, centered on different parts of the globe, lead to differences in the parameterized response and the potential to generate residual circulations as a result. Given the potential to generate this resolution sensitivity we examine simple modifications to the parameterized physics that are able to moderate any residual circulations. Finally, we transfer the framework to the standard AMIP configuration to examine the resolution sensitivity in the presence of compounding effects such as land-sea distributions, orography and seasonal variation.« less