skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stochastic Characterization of Communication Network Latency for Wide Area Grid Control Applications.

Abstract

This report characterizes communications network latency under various network topologies and qualities of service (QoS). The characterizations are probabilistic in nature, allowing deeper analysis of stability for Internet Protocol (IP) based feedback control systems used in grid applications. The work involves the use of Raspberry Pi computers as a proxy for a controlled resource, and an ns-3 network simulator on a Linux server to create an experimental platform (testbed) that can be used to model wide-area grid control network communications in smart grid. Modbus protocol is used for information transport, and Routing Information Protocol is used for dynamic route selection within the simulated network.

Authors:
 [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity Delivery and Energy Reliability (OE), Power Systems Engineering Research and Development (R&D) (OE-10)
OSTI Identifier:
1417873
Report Number(s):
SAND-2017-12578
659829
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Citation Formats

Ameme, Dan Selorm Kwami, and Guttromson, Ross. Stochastic Characterization of Communication Network Latency for Wide Area Grid Control Applications.. United States: N. p., 2017. Web. doi:10.2172/1417873.
Ameme, Dan Selorm Kwami, & Guttromson, Ross. Stochastic Characterization of Communication Network Latency for Wide Area Grid Control Applications.. United States. doi:10.2172/1417873.
Ameme, Dan Selorm Kwami, and Guttromson, Ross. Sun . "Stochastic Characterization of Communication Network Latency for Wide Area Grid Control Applications.". United States. doi:10.2172/1417873. https://www.osti.gov/servlets/purl/1417873.
@article{osti_1417873,
title = {Stochastic Characterization of Communication Network Latency for Wide Area Grid Control Applications.},
author = {Ameme, Dan Selorm Kwami and Guttromson, Ross},
abstractNote = {This report characterizes communications network latency under various network topologies and qualities of service (QoS). The characterizations are probabilistic in nature, allowing deeper analysis of stability for Internet Protocol (IP) based feedback control systems used in grid applications. The work involves the use of Raspberry Pi computers as a proxy for a controlled resource, and an ns-3 network simulator on a Linux server to create an experimental platform (testbed) that can be used to model wide-area grid control network communications in smart grid. Modbus protocol is used for information transport, and Routing Information Protocol is used for dynamic route selection within the simulated network.},
doi = {10.2172/1417873},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Oct 01 00:00:00 EDT 2017},
month = {Sun Oct 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • The advanced networking department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past several years as a forum to demonstrate and focus communication and networking developments. At Supercomputing 96, for the first time, Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory combined their Supercomputing 96 activities within a single research booth under the ASO banner. Sandia provided the network design and coordinated the networking activities within the booth. At Supercomputing 96, Sandia elected: to demonstrate wide area network connected Massively Parallel Processors, to demonstrate the functionalitymore » and capability of Sandia`s new edge architecture, to demonstrate inter-continental collaboration tools, and to demonstrate ATM video capabilities. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia`s overall strategies in ATM networking.« less
  • The advanced networking department at Sandia National Laboratories has used the annual Supercomputing conference sponsored by the IEEE and ACM for the past several years as a forum to demonstrate and focus communication and networking developments. At SC `97, Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL) combined their SC `97 activities within a single research booth under the Advance Strategic Computing Initiative (ASCI) banner. For the second year in a row, Sandia provided the network design and coordinated the networking activities within the booth. At SC `97, Sandia elected to demonstrate themore » capability of the Computation Plant, the visualization of scientific data, scalable ATM encryption, and ATM video and telephony capabilities. At SC `97, LLNL demonstrated an application, called RIPTIDE, that also required significant networking resources. The RIPTIDE application had computational visualization and steering capabilities. This paper documents those accomplishments, discusses the details of their implementation, and describes how these demonstrations support Sandia`s overall strategies in ATM networking.« less
  • Since the large North Eastern power system blackout on August 14, 2003, U.S. electric utilities have spent lot of effort on preventing power system cascading outages. Two of the main causes of the August 14, 2003 blackout were inadequate situational awareness and inadequate operator training In addition to the enhancements of the infrastructure of the interconnected power systems, more research and development of advanced power system applications are required for improving the wide-area security monitoring, operation and planning in order to prevent large- scale cascading outages of interconnected power systems. It is critically important for improving the wide-area situation awarenessmore » of the operators or operational engineers and regional reliability coordinators of large interconnected systems. With the installation of large number of phasor measurement units (PMU) and the related communication infrastructure, it will be possible to improve the operators’ situation awareness and to quickly identify the sequence of events during a large system disturbance for the post-event analysis using the real-time or historical synchrophasor data. The purpose of this project was to develop and demonstrate a novel synchrophasor-based comprehensive situational awareness system for control centers of power transmission systems. The developed system named WASA (Wide Area Situation Awareness) is intended to improve situational awareness at control centers of the power system operators and regional reliability coordinators. It consists of following main software modules: • Wide-area visualizations of real-time frequency, voltage, and phase angle measurements and their contour displays for security monitoring. • Online detection and location of a major event (location, time, size, and type, such as generator or line outage). • Near-real-time event replay (in seconds) after a major event occurs. • Early warning of potential wide-area stability problems. The system has been deployed and demonstrated at the Tennessee Valley Authority (TVA) and ISO New England system using real-time synchrophasor data from openPDC. Apart from the software product, the outcome of this project consists of a set of technical reports and papers describing the mathematical foundations and computational approaches of different tools and modules, implementation issues and considerations, lessons learned, and the results of lidation processes.« less
  • Large, distributed High Energy Physics (HEP) collaborations, such as D0, CDF and US-CMS, depend on stable and robust network paths between major world research centres. The evolving emphasis on data and compute Grids increases the reliance on network performance. Fermilab's experimental groups and network support personnel identified a critical need for WAN monitoring to ensure the quality and efficient utilization of such network paths. This has led to the development of the Network Monitoring system we will present in this paper. The system evolved from the IEPM-BW project, started at SLAC three years ago. At Fermilab this system has developedmore » into a fully functional infrastructure with bi-directional active network probes and path characterizations. It is based on the Iperf achievable throughput tool, Ping and Synack to test ICMP/TCP connectivity. It uses Pipechar and Traceroute to test, compare and report hop-by-hop network path characterization. It also measures real file transfer performance by BBFTP and GridFTP. The Monitoring system has an extensive web-interface and all the data is available through standalone SOAP web services or by a MonaLISA client. Also in this paper we will present a case study of network path asymmetry and abnormal performance between FNAL and SDSC, which was discovered and resolved by utilizing the Network Monitoring system.« less
  • Historically, TCP/IP has been the protocol suite used to transfer data throughout the Advanced Simulation and Computing (ASC) community. However, TCP was developed many years ago for an environment very different from the ASC Wide Area Network (WAN) of today. There have been numerous publications that hint of better performance if modifications were made to the TCP algorithms or a different protocol was used to transfer data across a high bandwidth, high delay WAN. Since Sandia National Laboratories wants to maximize the ASC WAN performance to support the Thor's Hammer supercomputer, there is strong interest in evaluating modifications to themore » TCP protocol and in evaluating alternatives to TCP, such as SCTP, to determine if they provide improved performance. Therefore, the goal of this project is to test, evaluate, compare, and report protocol technologies that enhance the performance of the ASC WAN.« less