Proton radius from electron scattering data
Abstract
Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. Methods: We make use of stepwise regression techniques using the F-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q 2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces resultsmore »
- Authors:
-
- Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
- Kent State Univ., Kent, OH (United States). Dept. of Physics
- Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Western Branch High School, Chesapeake, VA (United States)
- Univ. of Virginia, Charlottesville, VA (United States). Dept. of Physics
- Publication Date:
- Research Org.:
- Univ. of Virginia, Charlottesville, VA (United States)
- Sponsoring Org.:
- USDOE Office of Science (SC), Nuclear Physics (NP)
- OSTI Identifier:
- 1417866
- Alternate Identifier(s):
- OSTI ID: 1254887
- Grant/Contract Number:
- SC0014325; AC05-060R23177
- Resource Type:
- Journal Article: Accepted Manuscript
- Journal Name:
- Physical Review C
- Additional Journal Information:
- Journal Volume: 93; Journal Issue: 5; Journal ID: ISSN 2469-9985
- Publisher:
- American Physical Society (APS)
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; Protons; Charge Distributions; Scattering
Citation Formats
Higinbotham, Douglas W., Kabir, Al Amin, Lin, Vincent, Meekins, David, Norum, Blaine, and Sawatzky, Brad. Proton radius from electron scattering data. United States: N. p., 2016.
Web. doi:10.1103/PhysRevC.93.055207.
Higinbotham, Douglas W., Kabir, Al Amin, Lin, Vincent, Meekins, David, Norum, Blaine, & Sawatzky, Brad. Proton radius from electron scattering data. United States. https://doi.org/10.1103/PhysRevC.93.055207
Higinbotham, Douglas W., Kabir, Al Amin, Lin, Vincent, Meekins, David, Norum, Blaine, and Sawatzky, Brad. Tue .
"Proton radius from electron scattering data". United States. https://doi.org/10.1103/PhysRevC.93.055207. https://www.osti.gov/servlets/purl/1417866.
@article{osti_1417866,
title = {Proton radius from electron scattering data},
author = {Higinbotham, Douglas W. and Kabir, Al Amin and Lin, Vincent and Meekins, David and Norum, Blaine and Sawatzky, Brad},
abstractNote = {Background: The proton charge radius extracted from recent muonic hydrogen Lamb shift measurements is significantly smaller than that extracted from atomic hydrogen and electron scattering measurements. The discrepancy has become known as the proton radius puzzle. Purpose: In an attempt to understand the discrepancy, we review high-precision electron scattering results from Mainz, Jefferson Lab, Saskatoon and Stanford. Methods: We make use of stepwise regression techniques using the F-test as well as the Akaike information criterion to systematically determine the predictive variables to use for a given set and range of electron scattering data as well as to provide multivariate error estimates. Results: Starting with the precision, low four-momentum transfer (Q2) data from Mainz (1980) and Saskatoon (1974), we find that a stepwise regression of the Maclaurin series using the F-test as well as the Akaike information criterion justify using a linear extrapolation which yields a value for the proton radius that is consistent with the result obtained from muonic hydrogen measurements. Applying the same Maclaurin series and statistical criteria to the 2014 Rosenbluth results on GE from Mainz, we again find that the stepwise regression tends to favor a radius consistent with the muonic hydrogen radius but produces results that are extremely sensitive to the range of data included in the fit. Making use of the high-Q2 data on GE to select functions which extrapolate to high Q2, we find that a Pad´e (N = M = 1) statistical model works remarkably well, as does a dipole function with a 0.84 fm radius, GE(Q2) = (1 + Q2/0.66 GeV2)-2. Conclusions: Rigorous applications of stepwise regression techniques and multivariate error estimates result in the extraction of a proton charge radius that is consistent with the muonic hydrogen result of 0.84 fm; either from linear extrapolation of the extreme low-Q2 data or by use of the Pad´e approximant for extrapolation using a larger range of data. Thus, based on a purely statistical analysis of electron scattering data, we conclude that the electron scattering result and the muonic hydrogen result are consistent. Lastly, it is the atomic hydrogen results that are the outliers.},
doi = {10.1103/PhysRevC.93.055207},
url = {https://www.osti.gov/biblio/1417866},
journal = {Physical Review C},
issn = {2469-9985},
number = 5,
volume = 93,
place = {United States},
year = {2016},
month = {5}
}
Web of Science
Works referenced in this record:
Energy spectra of X-ray clusters of galaxies
journal, November 1976
- Avni, Y.
- The Astrophysical Journal, Vol. 210
Theoretical constraints and systematic effects in the determination of the proton form factors
journal, January 2015
- Lorenz, I. T.; Meißner, Ulf-G.; Hammer, H. -W.
- Physical Review D, Vol. 91, Issue 1
Evaluation of the strength of electron-proton scattering data for determining the proton charge radius
journal, January 2016
- Horbatsch, M.; Hessels, E. A.
- Physical Review C, Vol. 93, Issue 1
Electric and Magnetic Form Factors of the Nucleon
journal, April 1963
- Hand, L. N.; Miller, D. G.; Wilson, Richard
- Reviews of Modern Physics, Vol. 35, Issue 2
Extraction of the proton radius from electron-proton scattering data
journal, July 2015
- Lee, Gabriel; Arrington, John R.; Hill, Richard J.
- Physical Review D, Vol. 92, Issue 1
Muonic Hydrogen and the Proton Radius Puzzle
journal, October 2013
- Pohl, Randolf; Gilman, Ronald; Miller, Gerald A.
- Annual Review of Nuclear and Particle Science, Vol. 63, Issue 1
Electric and magnetic form factors of the proton
journal, July 2014
- Bernauer, J. C.; Distler, M. O.; Friedrich, J.
- Physical Review C, Vol. 90, Issue 1
Nuclear charge-density-distribution parameters from elastic electron scattering
journal, May 1987
- De Vries, H.; De Jager, C. W.; De Vries, C.
- Atomic Data and Nuclear Data Tables, Vol. 36, Issue 3
Charge Densities of the Neutron and Proton
journal, September 2007
- Miller, Gerald A.
- Physical Review Letters, Vol. 99, Issue 11
Recoil Polarization Measurements of the Proton Electromagnetic Form Factor Ratio to
journal, June 2010
- Puckett, A. J. R.; Brash, E. J.; Jones, M. K.
- Physical Review Letters, Vol. 104, Issue 24
Proton form factor from 0.15 to 0.79
journal, June 1974
- Murphy, J. J.; Shin, Y. M.; Skopik, D. M.
- Physical Review C, Vol. 9, Issue 6
High-Precision Determination of the Electric and Magnetic Form Factors of the Proton
journal, December 2010
- Bernauer, J. C.; Achenbach, P.; Ayerbe Gayoso, C.
- Physical Review Letters, Vol. 105, Issue 24
Measurements of the electric and magnetic form factors of the proton from =1.75 to 8.83 (GeV/ c
journal, November 1994
- Andivahis, L.; Bosted, P. E.; Lung, A.
- Physical Review D, Vol. 50, Issue 9
Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen
journal, January 2013
- Antognini, A.; Nez, F.; Schuhmann, K.
- Science, Vol. 339, Issue 6118
The size of the proton
journal, July 2010
- Pohl, Randolf; Antognini, Aldo; Nez, François
- Nature, Vol. 466, Issue 7303
The proton radius puzzle
journal, May 2015
- Carlson, Carl E.
- Progress in Particle and Nuclear Physics, Vol. 82
Absolute electron-proton cross sections at low momentum transfer measured with a high pressure gas target system
journal, January 1980
- Simon, G. G.; Schmitt, Ch.; Borkowski, F.
- Nuclear Physics A, Vol. 333, Issue 3
The charge distribution of 12C
journal, April 1980
- Cardman, L. S.; Lightbody, J. W.; Penner, S.
- Physics Letters B, Vol. 91, Issue 2
Polynomial fits and the proton radius puzzle
journal, October 2014
- Kraus, E.; Mesick, K. E.; White, A.
- Physical Review C, Vol. 90, Issue 4
Global analysis of proton elastic form factor data with two-photon exchange corrections
journal, September 2007
- Arrington, J.; Melnitchouk, W.; Tjon, J. A.
- Physical Review C, Vol. 76, Issue 3
Minuit - a system for function minimization and analysis of the parameter errors and correlations
journal, December 1975
- James, F.; Roos, M.
- Computer Physics Communications, Vol. 10, Issue 6
Erratum: Proton form factor from 0.15 to 0.79
journal, November 1974
- Murphy, J. J.; Shin, Y. M.; Skopik, D. M.
- Physical Review C, Vol. 10, Issue 5
Measurements of electron-proton elastic cross sections for
journal, July 2004
- Christy, M. E.; Ahmidouch, A.; Armstrong, C. S.
- Physical Review C, Vol. 70, Issue 1
Implications of the discrepancy between proton form factor measurements
journal, February 2004
- Arrington, J.
- Physical Review C, Vol. 69, Issue 2
CODATA recommended values of the fundamental physical constants: 2010
journal, November 2012
- Mohr, Peter J.; Taylor, Barry N.; Newell, David B.
- Reviews of Modern Physics, Vol. 84, Issue 4
Works referencing / citing this record:
Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors
journal, January 2020
- Ray, Pallavi; Pati, Debdeep; Bhattacharya, Anirban
- Statistics and Computing, Vol. 30, Issue 4
A small proton charge radius from an electron–proton scattering experiment
journal, November 2019
- Xiong, W.; Gasparian, A.; Gao, H.
- Nature, Vol. 575, Issue 7781
Deuteron charge radius and Rydberg constant from spectroscopy data in atomic deuterium
journal, March 2017
- Pohl, Randolf; Nez, François; Udem, Thomas
- Metrologia, Vol. 54, Issue 2
Virtual Delbrück scattering and the Lamb shift in light hydrogenlike atoms
journal, September 2019
- Szafron, Robert; Korzinin, Evgeny Yu.; Shelyuto, Valery A.
- Physical Review A, Vol. 100, Issue 3
Consistency of electron scattering data with a small proton radius
journal, June 2016
- Griffioen, Keith; Carlson, Carl; Maddox, Sarah
- Physical Review C, Vol. 93, Issue 6
Proton radius from electron-proton scattering and chiral perturbation theory
journal, March 2017
- Horbatsch, Marko; Hessels, Eric A.; Pineda, Antonio
- Physical Review C, Vol. 95, Issue 3
Measurement of two-photon exchange effect by comparing elastic cross sections
journal, June 2017
- Rimal, D.; Adikaram, D.; Raue, B. A.
- Physical Review C, Vol. 95, Issue 6
Polarization transfer observables in elastic electron-proton scattering at , 5.2, 6.8, and
journal, November 2017
- Puckett, A. J. R.; Brash, E. J.; Jones, M. K.
- Physical Review C, Vol. 96, Issue 5
Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors
journal, May 2018
- Alarcón, J. M.; Weiss, C.
- Physical Review C, Vol. 97, Issue 5
Proton charge radius extraction from electron scattering data using dispersively improved chiral effective field theory
journal, April 2019
- Alarcón, J. M.; Higinbotham, D. W.; Weiss, C.
- Physical Review C, Vol. 99, Issue 4
Reexamining the proton-radius problem using constrained Gaussian processes
journal, May 2019
- Zhou, Shuang; Giulani, P.; Piekarewicz, J.
- Physical Review C, Vol. 99, Issue 5
Leading order corrections to the Bethe-Heitler process in the reaction
journal, October 2019
- Heller, Matthias; Tomalak, Oleksandr; Wu, Shihao
- Physical Review D, Vol. 100, Issue 7
Two-photon exchange contribution to elastic -proton scattering: Full dispersive treatment of states and comparison with data
journal, November 2017
- Tomalak, Oleksandr; Pasquini, Barbara; Vanderhaeghen, Marc
- Physical Review D, Vol. 96, Issue 9
Computing the nucleon charge and axial radii directly at in lattice QCD
journal, February 2018
- Hasan, Nesreen; Green, Jeremy; Meinel, Stefan
- Physical Review D, Vol. 97, Issue 3
Proton Charge Radius from Electron Scattering
journal, December 2017
- Sick, Ingo
- Atoms, Vol. 6, Issue 1