skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading

Abstract

In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The lattermore » strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.« less

Authors:
ORCiD logo [1];  [1];  [2];  [2];  [2];  [2]
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
  2. KU Leuven
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); USDOE Office of Science (SC), Office of Biological and Environmental Research
OSTI Identifier:
1417797
Report Number(s):
NREL/JA-5100-70816
Journal ID: ISSN 0306-0012; CSRVBR
DOE Contract Number:  
AC36-08GO28308
Resource Type:
Journal Article
Journal Name:
Chemical Society Reviews
Additional Journal Information:
Journal Volume: 47; Journal Issue: 3; Journal ID: ISSN 0306-0012
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; lignin; biorefineries; valorisation; lignocellulose fractionation; depolymerisation

Citation Formats

Beckham, Gregg T, Schutyser, Wouter, Renders, Tom, Van den Bosch, Sander, Koelewijn, Steven-Friso, and Sels, Bert F. Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. United States: N. p., 2018. Web. doi:10.1039/C7CS00566K.
Beckham, Gregg T, Schutyser, Wouter, Renders, Tom, Van den Bosch, Sander, Koelewijn, Steven-Friso, & Sels, Bert F. Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading. United States. doi:10.1039/C7CS00566K.
Beckham, Gregg T, Schutyser, Wouter, Renders, Tom, Van den Bosch, Sander, Koelewijn, Steven-Friso, and Sels, Bert F. Mon . "Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading". United States. doi:10.1039/C7CS00566K.
@article{osti_1417797,
title = {Chemicals from Lignin: An Interplay of Lignocellulose Fractionation, Depolymerisation, and Upgrading},
author = {Beckham, Gregg T and Schutyser, Wouter and Renders, Tom and Van den Bosch, Sander and Koelewijn, Steven-Friso and Sels, Bert F.},
abstractNote = {In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon-carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.},
doi = {10.1039/C7CS00566K},
journal = {Chemical Society Reviews},
issn = {0306-0012},
number = 3,
volume = 47,
place = {United States},
year = {2018},
month = {1}
}

Works referenced in this record:

Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering
journal, September 2006

  • Huber, George W.; Iborra, Sara; Corma, Avelino
  • Chemical Reviews, Vol. 106, Issue 9, p. 4044-4098
  • DOI: 10.1021/cr068360d

Catalytic Transformation of Lignin for the Production of Chemicals and Fuels
journal, October 2015


Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals
journal, July 2011


Hydroxycinnamates in lignification
journal, August 2009


Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis
journal, April 2009

  • Lee, Sang Hyun; Doherty, Thomas V.; Linhardt, Robert J.
  • Biotechnology and Bioengineering, Vol. 102, Issue 5, p. 1368-1376
  • DOI: 10.1002/bit.22179

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007

  • Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.
  • Science, Vol. 315, Issue 5813, p. 804-807
  • DOI: 10.1126/science.1137016

Lignin Structural Modifications Resulting from Ethanol Organosolv Treatment of Loblolly Pine
journal, January 2010

  • Sannigrahi, Poulomi; Ragauskas, Arthur J.; Miller, Stephen J.
  • Energy & Fuels, Vol. 24, Issue 1, p. 683-689
  • DOI: 10.1021/ef900845t

Strategies for the Conversion of Lignin to High-Value Polymeric Materials: Review and Perspective
journal, December 2015


Lignin Valorization: Improving Lignin Processing in the Biorefinery
journal, May 2014

  • Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.
  • Science, Vol. 344, Issue 6185, p. 1246843-1246843
  • DOI: 10.1126/science.1246843

Pathways for degradation of lignin in bacteria and fungi
journal, January 2011

  • Bugg, Timothy D. H.; Ahmad, Mark; Hardiman, Elizabeth M.
  • Natural Product Reports, Vol. 28, Issue 12, p. 1883-1896
  • DOI: 10.1039/c1np00042j

Formic-acid-induced depolymerization of oxidized lignin to aromatics
journal, November 2014

  • Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.
  • Nature, Vol. 515, Issue 7526, p. 249-252
  • DOI: 10.1038/nature13867

Chemical Routes for the Transformation of Biomass into Chemicals
journal, June 2007

  • Corma, Avelino; Iborra, Sara; Velty, Alexandra
  • Chemical Reviews, Vol. 107, Issue 6, p. 2411-2502
  • DOI: 10.1021/cr050989d

The Effect of Flow Rate of Compressed Hot Water on Xylan, Lignin, and Total Mass Removal from Corn Stover
journal, September 2003

  • Liu, Chaogang; Wyman, Charles E.
  • Industrial & Engineering Chemistry Research, Vol. 42, Issue 21, p. 5409-5416
  • DOI: 10.1021/ie030458k

The Catalytic Valorization of Lignin for the Production of Renewable Chemicals
journal, June 2010

  • Zakzeski, Joseph; Bruijnincx, Pieter C. A.; Jongerius, Anna L.
  • Chemical Reviews, Vol. 110, Issue 6, p. 3552-3599
  • DOI: 10.1021/cr900354u

The occurrence and reactivity of phenoxyl linkages in lignin and low rank coal
journal, March 2000

  • Dorrestijn, Edwin; Laarhoven, Lucas J. J.; Arends, Isabel W. C. E.
  • Journal of Analytical and Applied Pyrolysis, Vol. 54, Issue 1-2, p. 153-192
  • DOI: 10.1016/S0165-2370(99)00082-0

Review of fast pyrolysis of biomass and product upgrading
journal, March 2012


Mild Heterogeneous Palladium-Catalyzed Cleavage of β-O-4′-Ether Linkages of Lignin Model Compounds and Native Lignin in Air
journal, November 2013

  • Galkin, Maxim V.; Sawadjoon, Supaporn; Rohde, Volker
  • ChemCatChem, Vol. 6, Issue 1, p. 179-184
  • DOI: 10.1002/cctc.201300540

Fermentable sugars by chemical hydrolysis of biomass
journal, March 2010

  • Binder, J. B.; Raines, R. T.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 10, p. 4516-4521
  • DOI: 10.1073/pnas.0912073107

A comparison of the insoluble residues produced by the Klason lignin and acid detergent lignin procedures
journal, May 1994

  • Hatfield, Ronald D.; Jung, Hans-Joachim G.; Ralph, John
  • Journal of the Science of Food and Agriculture, Vol. 65, Issue 1, p. 51-58
  • DOI: 10.1002/jsfa.2740650109

The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse
journal, October 2006

  • McLeod, M. P.; Warren, R. L.; Hsiao, W. W. L.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 42, p. 15582-15587
  • DOI: 10.1073/pnas.0607048103

Chemoselective Metal-Free Aerobic Alcohol Oxidation in Lignin
journal, April 2013

  • Rahimi, Alireza; Azarpira, Ali; Kim, Hoon
  • Journal of the American Chemical Society, Vol. 135, Issue 17, p. 6415-6418
  • DOI: 10.1021/ja401793n

Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440
journal, December 2002


Lignin content in natural Populus variants affects sugar release
journal, March 2011

  • Studer, M. H.; DeMartini, J. D.; Davis, M. F.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 15, p. 6300-6305
  • DOI: 10.1073/pnas.1009252108

Lignin engineering
journal, June 2008

  • Vanholme, R.; Morreel, K.; Ralph, J.
  • Current Opinion in Plant Biology, Vol. 11, Issue 3, p. 278-285
  • DOI: 10.1016/j.pbi.2008.03.005

Alkaline Pretreatment of Corn Stover: Bench-Scale Fractionation and Stream Characterization
journal, May 2014

  • Karp, Eric M.; Donohoe, Bryon S.; O’Brien, Marykate H.
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 6, p. 1481-1491
  • DOI: 10.1021/sc500126u

The Effect of Flow Rate of Very Dilute Sulfuric Acid on Xylan, Lignin, and Total Mass Removal from Corn Stover
journal, May 2004

  • Liu, Chaogang; Wyman, Charles E.
  • Industrial & Engineering Chemistry Research, Vol. 43, Issue 11, p. 2781-2788
  • DOI: 10.1021/ie030754x

Lignin valorization through integrated biological funneling and chemical catalysis
journal, August 2014

  • Linger, J. G.; Vardon, D. R.; Guarnieri, M. T.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 33, p. 12013-12018
  • DOI: 10.1073/pnas.1410657111

Liquid fuels, hydrogen and chemicals from lignin A critical review
journal, May 2013

  • Azadi, Pooya; Inderwildi, Oliver R.; Farnood, Ramin
  • Renewable and Sustainable Energy Reviews, Vol. 21, p. 506-523
  • DOI: 10.1016/j.rser.2012.12.022

Monolignol Ferulate Transferase Introduces Chemically Labile Linkages into the Lignin Backbone
journal, April 2014


Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals
journal, October 2011


Lignin modification improves fermentable sugar yields for biofuel production
journal, June 2007

  • Chen, Fang; Dixon, Richard A.
  • Nature Biotechnology, Vol. 25, Issue 7, p. 759-761
  • DOI: 10.1038/nbt1316

Screening heterogeneous catalysts for the pyrolysis of lignin
journal, May 2009

  • Jackson, Michael A.; Compton, David L.; Boateng, Akwasi A.
  • Journal of Analytical and Applied Pyrolysis, Vol. 85, Issue 1-2, p. 226-230
  • DOI: 10.1016/j.jaap.2008.09.016

The Path Forward for Biofuels and Biomaterials
journal, January 2006

  • Ragauskas, Arthur J.; Williams, Charlotte K.; Davison, Brian H.
  • Science, Vol. 311, Issue 5760, p. 484-489
  • DOI: 10.1126/science.1114736

Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process
journal, January 2013

  • Song, Qi; Wang, Feng; Cai, Jiaying
  • Energy & Environmental Science, Vol. 6, Issue 3, p. 994-1007
  • DOI: 10.1039/c2ee23741e

An Unusual Lignin from Kenaf
journal, January 1996

  • Ralph, John
  • Journal of Natural Products, Vol. 59, Issue 4, p. 341-342
  • DOI: 10.1021/np960143s

Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids
journal, January 2004


Valorization of Biomass: Deriving More Value from Waste
journal, August 2012


p-Hydroxybenzoate groups in the lignin of aspen (populus tremula)
journal, January 1955

  • Smith, D. C. C.
  • Journal of the Chemical Society (Resumed), Vol. 0, Issue 0, p. 2347-2351
  • DOI: 10.1039/jr9550002347

Towards Quantitative Catalytic Lignin Depolymerization
journal, April 2011

  • Roberts, Virginia. M.; Stein, Valentin; Reiner, Thomas
  • Chemistry - A European Journal, Vol. 17, Issue 21, p. 5939-5948
  • DOI: 10.1002/chem.201002438

Chemical modification of lignins: Towards biobased polymers
journal, July 2014


Lignin Biosynthesis
journal, June 2003


Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO2 catalysts
journal, January 2010

  • Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A.
  • Chemical Communications, Vol. 46, Issue 3, p. 412-414
  • DOI: 10.1039/B916822B

The β-Ketoadipate Pathway And The Biology Of Self-Identity
journal, October 1996


Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis
journal, January 2013

  • Parsell, Trenton H.; Owen, Benjamin C.; Klein, Ian
  • Chem. Sci., Vol. 4, Issue 2, p. 806-813
  • DOI: 10.1039/C2SC21657D

Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440
journal, December 2002


Solvent Effects on the Hydrogenolysis of Diphenyl Ether with Raney Nickel and their Implications for the Conversion of Lignin
journal, April 2012


Disruption of Mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant
journal, March 2014

  • Bonawitz, Nicholas D.; Kim, Jeong Im; Tobimatsu, Yuki
  • Nature, Vol. 509, Issue 7500, p. 376-380
  • DOI: 10.1038/nature13084

Lignin Depolymerization and Conversion A Review of Thermochemical Methods
journal, November 2010

  • Pandey, M. P.; Kim, C. S.
  • Chemical Engineering & Technology, Vol. 34, Issue 1, p. 29-41
  • DOI: 10.1002/ceat.201000270

One-Pot Catalytic Conversion of Cellulose and of Woody Biomass Solids to Liquid Fuels
journal, September 2011

  • Matson, Theodore D.; Barta, Katalin; Iretskii, Alexei V.
  • Journal of the American Chemical Society, Vol. 133, Issue 35, p. 14090-14097
  • DOI: 10.1021/ja205436c

A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments
journal, November 2013

  • Sturgeon, Matthew R.; Kim, Seonah; Lawrence, Kelsey
  • ACS Sustainable Chemistry & Engineering, Vol. 2, Issue 3, p. 472-485
  • DOI: 10.1021/sc400384w

Microbial degradation of aromatic compounds — from one strategy to four
journal, October 2011

  • Fuchs, Georg; Boll, Matthias; Heider, Johann
  • Nature Reviews Microbiology, Vol. 9, Issue 11, p. 803-816
  • DOI: 10.1038/nrmicro2652

Pretreatment and fractionation of corn stover by ammonia recycle percolation process
journal, December 2005


Lime pretreatment and enzymatic hydrolysis of corn stover
journal, December 2005


Lignin fast pyrolysis: Results from an international collaboration
journal, May 2010

  • Nowakowski, D. J.; Bridgwater, A. V.; Elliott, D. C.
  • Journal of Analytical and Applied Pyrolysis, Vol. 88, Issue 1, p. 53-72
  • DOI: 10.1016/j.jaap.2010.02.009

Phenols from Lignin
journal, May 2008

  • Kleinert, M.; Barth, T.
  • Chemical Engineering & Technology, Vol. 31, Issue 5, p. 736-745
  • DOI: 10.1002/ceat.200800073

Highly Selective Catalytic Conversion of Phenolic Bio-Oil to Alkanes
journal, May 2009

  • Zhao, Chen; Kou, Yuan; Lemonidou, Angeliki A.
  • Angewandte Chemie International Edition, Vol. 48, Issue 22, p. 3987-3990
  • DOI: 10.1002/anie.200900404

Lignin Biosynthesis and Structure
journal, May 2010

  • Vanholme, R.; Demedts, B.; Morreel, K.
  • Plant Physiology, Vol. 153, Issue 3, p. 895-905
  • DOI: 10.1104/pp.110.155119

Bio-ethanol – the fuel of tomorrow from the residues of today
journal, December 2006

  • Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M. F.
  • Trends in Biotechnology, Vol. 24, Issue 12, p. 549-556
  • DOI: 10.1016/j.tibtech.2006.10.004

Lignin Pyrolysis Components and Upgrading—Technology Review
journal, February 2013


Environmentally compatible synthesis of adipic acid from D-glucose
journal, January 1994

  • Draths, Karen M.; Frost, John W.
  • Journal of the American Chemical Society, Vol. 116, Issue 1, p. 399-400
  • DOI: 10.1021/ja00080a057