skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe

Abstract

The thermoelectric properties of polycrystalline SnTe have been measured up to 4.5 GPa at 330 K. SnTe shows an enormous enhancement in Seebeck coefficient, greater than 200 % after 3 GPa, which correlates to a known pressure-induced structural phase transition that is observed through simultaneous in situ X-ray diffraction measurement. Electrical resistance and relative changes to the thermal conductivity were also measured, enabling the determination of relative changes in the dimensionless figure of merit (ZT), which increases dramatically after 3 GPa, reaching 350 % of the lowest pressure ZT value. The results demonstrate a fundamental relationship between structure and thermoelectric behaviours and suggest that pressure is an effective tool to control them.

Authors:
 [1];  [1]; ORCiD logo [2];  [2];  [1];  [3]
  1. HiPSEC and Department of Physics and Astronomy, University of Nevada, Las Vegas (UNLV), 4505 S. Maryland Parkway Las Vegas NV 89154 USA
  2. (HPCAT) Geophysical Laboratory, Carnegie Institution of Washington, 9700 S. Cass Avenue Argonne IL 60439 USA
  3. Shock and Detonation Group, Los Alamos National Laboratory, Los Alamos NM 857545 USA
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1417382
Resource Type:
Journal Article
Resource Relation:
Journal Name: ChemPhysChem; Journal Volume: 18; Journal Issue: 23
Country of Publication:
United States
Language:
ENGLISH
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Baker, Jason, Kumar, Ravhi, Park, Changyong, Kenney-Benson, Curtis, Cornelius, Andrew, and Velisavljevic, Nenad. Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe. United States: N. p., 2017. Web. doi:10.1002/cphc.201700994.
Baker, Jason, Kumar, Ravhi, Park, Changyong, Kenney-Benson, Curtis, Cornelius, Andrew, & Velisavljevic, Nenad. Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe. United States. doi:10.1002/cphc.201700994.
Baker, Jason, Kumar, Ravhi, Park, Changyong, Kenney-Benson, Curtis, Cornelius, Andrew, and Velisavljevic, Nenad. Mon . "Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe". United States. doi:10.1002/cphc.201700994.
@article{osti_1417382,
title = {Giant Pressure-Induced Enhancement of Seebeck Coefficient and Thermoelectric Efficiency in SnTe},
author = {Baker, Jason and Kumar, Ravhi and Park, Changyong and Kenney-Benson, Curtis and Cornelius, Andrew and Velisavljevic, Nenad},
abstractNote = {The thermoelectric properties of polycrystalline SnTe have been measured up to 4.5 GPa at 330 K. SnTe shows an enormous enhancement in Seebeck coefficient, greater than 200 % after 3 GPa, which correlates to a known pressure-induced structural phase transition that is observed through simultaneous in situ X-ray diffraction measurement. Electrical resistance and relative changes to the thermal conductivity were also measured, enabling the determination of relative changes in the dimensionless figure of merit (ZT), which increases dramatically after 3 GPa, reaching 350 % of the lowest pressure ZT value. The results demonstrate a fundamental relationship between structure and thermoelectric behaviours and suggest that pressure is an effective tool to control them.},
doi = {10.1002/cphc.201700994},
journal = {ChemPhysChem},
number = 23,
volume = 18,
place = {United States},
year = {Mon Oct 30 00:00:00 EDT 2017},
month = {Mon Oct 30 00:00:00 EDT 2017}
}