skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Profugus

Abstract

Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is not meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Oak Ridge National Laboratory
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21)
OSTI Identifier:
1417334
Report Number(s):
Profugus; 005563MLTPL00
Resource Type:
Software
Software Revision:
00
Software Package Number:
005563
Software CPU:
MLTPL
Open Source:
Yes
Source Code Available:
Yes
Country of Publication:
United States

Citation Formats

Evans, Thomas, Hamilton, Steven, Slattery, Stuart, Davidson, Greg, and Johnson, Seth. Profugus. Computer software. https://www.osti.gov//servlets/purl/1417334. Vers. 00. USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR) (SC-21). 18 Jan. 2018. Web.
Evans, Thomas, Hamilton, Steven, Slattery, Stuart, Davidson, Greg, & Johnson, Seth. (2018, January 18). Profugus (Version 00) [Computer software]. https://www.osti.gov//servlets/purl/1417334.
Evans, Thomas, Hamilton, Steven, Slattery, Stuart, Davidson, Greg, and Johnson, Seth. Profugus. Computer software. Version 00. January 18, 2018. https://www.osti.gov//servlets/purl/1417334.
@misc{osti_1417334,
title = {Profugus, Version 00},
author = {Evans, Thomas and Hamilton, Steven and Slattery, Stuart and Davidson, Greg and Johnson, Seth},
abstractNote = {Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is not meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.},
url = {https://www.osti.gov//servlets/purl/1417334},
doi = {},
year = 2018,
month = 1,
note =
}

Software:
To order this software, request consultation services, or receive further information, please fill out the following request.

Save / Share:
  • This report presents the results of a customer telephone survey of the users of two software programs provided by the U. S. Department of Energy Federal Energy Management Program (FEMP) during calendar years 1995 and 1996. The primary purpose for the survey is to provide the Team Leader to FEMP Technical Assistance and members of the team with detailed customer feedback pertaining to how well selected FEMP software programs are being used and to identify areas for improvement. The information presented enables managers to see both the strengths of their software programs and software components that can be improved. Themore » survey was conducted during the fall of 1997 in conjunction with a FEMP workshop attendee survey. The results of the workshop survey are presented is a sister document entitled, ''An Evaluation of the Federal Energy Management Program's Technical Assistance Workshops.« less
  • By means of a literature survey, a comprehensive set of methods was identified for the verification and validation of conventional software. The 153 methods so identified were classified according to their appropriateness for various phases of a developmental life-cycle -- requirements, design, and implementation; the last category was subdivided into two, static testing and dynamic testing methods. The methods were then characterized in terms of eight rating factors, four concerning ease-of-use of the methods and four concerning the methods` power to detect defects. Based on these factors, two measurements were developed to permit quantitative comparisons among methods, a Cost-Benefit metricmore » and an Effectiveness Metric. The Effectiveness Metric was further refined to provide three different estimates for each method, depending on three classes of needed stringency of V&V (determined by ratings of a system`s complexity and required-integrity). Methods were then rank-ordered for each of the three classes by terms of their overall cost-benefits and effectiveness. The applicability was then assessed of each for the identified components of knowledge-based and expert systems, as well as the system as a whole.« less
  • By means of a literature survey, a comprehensive set of methods was identified for the verification and validation of conventional software. The 153 methods so identified were classified according to their appropriateness for various phases of a developmental life-cycle -- requirements, design, and implementation; the last category was subdivided into two, static testing and dynamic testing methods. The methods were then characterized in terms of eight rating factors, four concerning ease-of-use of the methods and four concerning the methods` power to detect defects. Based on these factors, two measurements were developed to permit quantitative comparisons among methods, a Cost-Benefit Metricmore » and an Effectiveness Metric. The Effectiveness Metric was further refined to provide three different estimates for each method, depending on three classes of needed stringency of V&V (determined by ratings of a system`s complexity and required-integrity). Methods were then rank-ordered for each of the three classes in terms of their overall cost-benefits and effectiveness. The applicability was then assessed of each method for the four identified components of knowledge-based and expert systems, as well as the system as a whole.« less
  • The Software Quality Forum is a triennial conference held by the Software Quality Assurance Subcommittee for the Department of Energy's Quality Managers. The forum centers on key issues, information, and technology important in software development for the Nuclear Weapons Complex. This year it will be opened up to include local information technology companies and software vendors presenting their solutions, ideas, and lessons learned. The Software Quality Forum 2000 will take on a more hands-on, instructional tone than those previously held. There will be an emphasis on providing information, tools, and resources to assist developers in their goal of producing nextmore » generation software.« less
  • The EPRI Information Monitoring and Applied Graphics Environment (IMAGE) system is designed for 'fast proto-typing' of advanced concepts for computer-aided plant operations tools. It is a flexible software system which can be used for rapidly creating, dynamically driving and evaluating advanced operator aid displays. The software is written to be both host computer and graphic device independent.

To initiate an order for this software, request consultation services, or receive further information, fill out the request form below. You may also reach us by email at: .

OSTI staff will begin to process an order for scientific and technical software once the payment and signed site license agreement are received. If the forms are not in order, OSTI will contact you. No further action will be taken until all required information and/or payment is received. Orders are usually processed within three to five business days.

Software Request

(required)
(required)
(required)
(required)
(required)
(required)
(required)
(required)