skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reduced electron exposure for energy-dispersive spectroscopy using dynamic sampling

Abstract

Analytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sensitive materials has been a challenging area due to irradiation damage. There is a pressing need to develop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well as reduce the data acquisition time. The latter is useful for high-throughput analysis of materials structure and chemistry. In this work, we present a novel machine learning based method for dynamic sparse sampling of EDS data using a scanning electron microscope. Our method, based on the supervised learning approach for dynamic sampling algorithm and neural networks based classification of EDS data, allows a dramatic reduction in the total sampling of up to 90%, while maintaining the fidelity of the reconstructed elemental maps and spectroscopic data. We believe this approach will enable imaging and elemental mapping of materials that would otherwise be inaccessible to these analysis techniques.

Authors:
; ; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
Argonne National Laboratory - Laboratory Directed Research and Development (LDRD); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1416973
DOE Contract Number:
AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: Ultramicroscopy; Journal Volume: 184; Journal Issue: PB
Country of Publication:
United States
Language:
English
Subject:
Energy dispersive spectroscopy (EDS); Neural Networks; SLADS; dose reduction; dynamic sampling; scanning electron microscopy (SEM)

Citation Formats

Zhang, Yan, Godaliyadda, G. M. Dilshan, Ferrier, Nicola, Gulsoy, Emine B., Bouman, Charles A., and Phatak, Charudatta. Reduced electron exposure for energy-dispersive spectroscopy using dynamic sampling. United States: N. p., 2018. Web. doi:10.1016/j.ultramic.2017.10.015.
Zhang, Yan, Godaliyadda, G. M. Dilshan, Ferrier, Nicola, Gulsoy, Emine B., Bouman, Charles A., & Phatak, Charudatta. Reduced electron exposure for energy-dispersive spectroscopy using dynamic sampling. United States. doi:10.1016/j.ultramic.2017.10.015.
Zhang, Yan, Godaliyadda, G. M. Dilshan, Ferrier, Nicola, Gulsoy, Emine B., Bouman, Charles A., and Phatak, Charudatta. 2018. "Reduced electron exposure for energy-dispersive spectroscopy using dynamic sampling". United States. doi:10.1016/j.ultramic.2017.10.015.
@article{osti_1416973,
title = {Reduced electron exposure for energy-dispersive spectroscopy using dynamic sampling},
author = {Zhang, Yan and Godaliyadda, G. M. Dilshan and Ferrier, Nicola and Gulsoy, Emine B. and Bouman, Charles A. and Phatak, Charudatta},
abstractNote = {Analytical electron microscopy and spectroscopy of biological specimens, polymers, and other beam sensitive materials has been a challenging area due to irradiation damage. There is a pressing need to develop novel imaging and spectroscopic imaging methods that will minimize such sample damage as well as reduce the data acquisition time. The latter is useful for high-throughput analysis of materials structure and chemistry. In this work, we present a novel machine learning based method for dynamic sparse sampling of EDS data using a scanning electron microscope. Our method, based on the supervised learning approach for dynamic sampling algorithm and neural networks based classification of EDS data, allows a dramatic reduction in the total sampling of up to 90%, while maintaining the fidelity of the reconstructed elemental maps and spectroscopic data. We believe this approach will enable imaging and elemental mapping of materials that would otherwise be inaccessible to these analysis techniques.},
doi = {10.1016/j.ultramic.2017.10.015},
journal = {Ultramicroscopy},
number = PB,
volume = 184,
place = {United States},
year = 2018,
month = 1
}
  • The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ 1,3 XES spectra of Mn II and Mn 2 III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less
  • One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, χ(q,ω). The imaginary part, χ"(q,ω), defines the fundamental bosonic charge excitations of the system, exhibiting peaks wherever collective modes are present. χ quantifies the electronic compressibility of a material, its response to external fields, its ability to screen charge, and its tendency to form charge density waves. Unfortunately, there has never been a fully momentum-resolved means to measure χ(q,ω) at the meV energy scale relevant to modern electronic materials. Here, we demonstrate a way to measure χ with quantitative momentum resolutionmore » by applying alignment techniques from x-ray and neutron scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS). This approach, which we refer to here as M-EELS" allows direct measurement of χ"(q,ω) with meV resolution while controlling the momentum with an accuracy better than a percent of a typical Brillouin zone. We apply this technique to finite-{\bf q} excitations in the optimally-doped high temperature superconductor, Bi 2Sr 2CaCu 2O 8+x (Bi2212), which exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES and STM experiments. In conclusion, our study defines a path to studying the long-sought collective charge modes in quantum materials at the meV scale and with full momentum control.« less
  • One of the most fundamental properties of an interacting electron system is its frequency- and wave-vector-dependent density response function, χ(q,ω). The imaginary part, χ"(q,ω), defines the fundamental bosonic charge excitations of the system, exhibiting peaks wherever collective modes are present. χ quantifies the electronic compressibility of a material, its response to external fields, its ability to screen charge, and its tendency to form charge density waves. Unfortunately, there has never been a fully momentum-resolved means to measure χ(q,ω) at the meV energy scale relevant to modern electronic materials. Here, we demonstrate a way to measure χ with quantitative momentum resolutionmore » by applying alignment techniques from x-ray and neutron scattering to surface high-resolution electron energy-loss spectroscopy (HR-EELS). This approach, which we refer to here as M-EELS" allows direct measurement of χ"(q,ω) with meV resolution while controlling the momentum with an accuracy better than a percent of a typical Brillouin zone. We apply this technique to finite-{\bf q} excitations in the optimally-doped high temperature superconductor, Bi 2Sr 2CaCu 2O 8+x (Bi2212), which exhibits several phonons potentially relevant to dispersion anomalies observed in ARPES and STM experiments. In conclusion, our study defines a path to studying the long-sought collective charge modes in quantum materials at the meV scale and with full momentum control.« less
  • Elemental distributions and chemical bonding states of oxygen-ion-implanted SiC have been examined using scanning transmission electron microscopy (STEM) equipped with an energy dispersive X-ray spectrometer (EDX) and an electron energy loss spectrometer (EELS). 6H-SiC single crystals with [0001] orientation were implanted with 180 keV oxygen ions at 650 C to fluences of 0.7 x 10{sup 18} and 1.4 x 10{sup 18} cm{sup 2}. STEM-EDX/EELS measurements show that the low-dose sample possesses a buried amorphous SiC{sub x}O{sub y} layer, and oxygen concentration peaks around the center of the buried amorphous layer. On the other hand, a well-defined SiO{sub 2} layer includingmore » self-bonded carbon atoms is formed in the high-dose sample, and this amorphous region has a layered structure due to compositional variations of silicon, carbon, and oxygen. A slight chemical disordering induced by implantation is also confirmed to exist in topmost SiC layer.« less