skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Signal Transduction Pathways of Chloroplast Quality Control

Technical Report ·
DOI:https://doi.org/10.2172/1416021· OSTI ID:1416021

Chloroplasts (photosynthetic organelles) of higher plants contain about 3000 proteins, but fewer than 5% of these proteins are encoded by genes in the chloroplast. The rest are encoded by genes in the nucleus, which is a separate organelle within the plant cell. To avoid the accumulation of dangerous reactive oxygen species that are the inherent by-product of photosynthesis, gene expression of these spatially separated genomes is regulated by two-way signaling. Thus, while plastid differentiation and development are largely controlled by the nucleus and the proteins encoded within, developmentally arrested or damaged plastids can regulate expression of nuclear genes via retrograde signaling pathways. During the early years of this DOE-funded study, we performed a number of genetic screens to identify genes and protein involved in these signals. Based on the genes that we identified, we found that chloroplast gene expression and the chlorophyll (the major light-harvesting pigment that gives plant tissue its characteristic green color) biosynthetic pathway can act as the source of both positive and stress-related retrograde signals. We also found a new protein called GUN1, that plays a crucial role in retrograde signaling. Although the exact molecular mechanism of GUN1 remains a mystery, our work showed that it likely acts in the chloroplast to coordinate chloroplast gene expression with nuclear gene expression and to ensure that seedlings can quickly green after germination. Using that work as a foundation, we have recently uncovered a new type of retrograde signal that leads to the selective removal of damaged chloroplasts from the cell. We have only begun the characterization of this pathway, but our initial studies have suggested that this may be an extremely important mechanism that allows plants to adapt to stressful conditions. Together this will aid in the understanding of the developmental control of photosynthesis, the chloroplast assembly/disassembly pathways, and how plants adapt to stressful conditions. Ultimately, we hope this work will allow us to begin to engineer these crucial pathways into agriculturally important or bioenergy rich crops. This will be crucial to our quest for an abundant food supply and cheap, dependable sources of energy.

Research Organization:
The Salk Inst. for Biological Studies, La Jolla, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
FG02-04ER15540
OSTI ID:
1416021
Report Number(s):
DOE-SALK-04ER15540
Country of Publication:
United States
Language:
English

Similar Records

Signal Transduction Pathways of Chloroplast Quality Control (Final Report)
Technical Report · Wed Sep 20 00:00:00 EDT 2023 · OSTI ID:1416021

GUN1 interacts with MORF2 to regulate plastid RNA editing during retrograde signaling
Journal Article · Mon Apr 15 00:00:00 EDT 2019 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:1416021

Signal Transduction Pathways that Regulate CAB Gene Expression
Technical Report · Mon Jan 16 00:00:00 EST 2006 · OSTI ID:1416021

Related Subjects