skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry

Authors:
; ; ; ; ; ; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1415897
Grant/Contract Number:
AC06-76RL01830; 65324
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Analytica Chimica Acta
Additional Journal Information:
Journal Volume: 972; Journal Issue: C; Related Information: CHORUS Timestamp: 2018-01-05 16:12:15; Journal ID: ISSN 0003-2670
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Tfaily, Malak M., Chu, Rosalie K., Toyoda, Jason, Tolić, Nikola, Robinson, Errol W., Paša-Tolić, Ljiljana, and Hess, Nancy J. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry. Netherlands: N. p., 2017. Web. doi:10.1016/j.aca.2017.03.031.
Tfaily, Malak M., Chu, Rosalie K., Toyoda, Jason, Tolić, Nikola, Robinson, Errol W., Paša-Tolić, Ljiljana, & Hess, Nancy J. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry. Netherlands. doi:10.1016/j.aca.2017.03.031.
Tfaily, Malak M., Chu, Rosalie K., Toyoda, Jason, Tolić, Nikola, Robinson, Errol W., Paša-Tolić, Ljiljana, and Hess, Nancy J. Thu . "Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry". Netherlands. doi:10.1016/j.aca.2017.03.031.
@article{osti_1415897,
title = {Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry},
author = {Tfaily, Malak M. and Chu, Rosalie K. and Toyoda, Jason and Tolić, Nikola and Robinson, Errol W. and Paša-Tolić, Ljiljana and Hess, Nancy J.},
abstractNote = {},
doi = {10.1016/j.aca.2017.03.031},
journal = {Analytica Chimica Acta},
number = C,
volume = 972,
place = {Netherlands},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.aca.2017.03.031

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO2. The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition.more » In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H2O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl3) mixture, or acetonitrile (ACN) and CHCl3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample is used for each solvent type. Furthermore, a comparison of SOM composition from the different sample types revealed that our sequential protocol allows for ecosystem comparisons based on the diversity of compounds present, which in turn could provide new insights about source and processing of organic compounds in different soil and sediment types.« less
  • Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon cycling, although the molecular details of these transformations remain unclear. This study reports the application of ultrahigh resolution mass spectrometry to profile the molecular composition of SOM and its degradation during a simulated warming experiment. A soil sample, collected near Barrow, Alaska, USA, was subjected to a 40-day incubation under anoxic conditions and analyzed before and after the incubation to determine changes of SOM composition. A CHO index based on molecular C, H, and O data was utilized to codify SOM components according to their observedmore » degradation potentials. Compounds with a CHO index score between –1 and 0 in a water-soluble fraction (WSF) demonstrated high degradation potential, with a highest shift of CHO index occurred in the N-containing group of compounds, while similar stoichiometries in a base-soluble fraction (BSF) did not. Additionally, compared with the classical H:C vs O:C van Krevelen diagram, CHO index allowed for direct visualization of the distribution of heteroatoms such as N in the identified SOM compounds. We demonstrate that CHO index is useful not only in characterizing arctic SOM at the molecular level but also enabling quantitative description of SOM degradation, thereby facilitating incorporation of the high resolution MS datasets to future mechanistic models of SOM degradation and prediction of greenhouse gas emissions.« less
  • Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon cycling, although the molecular details of these transformations remain unclear. This study reports the application of ultrahigh resolution mass spectrometry to profile the molecular composition of SOM and its degradation during a simulated warming experiment. A soil sample, collected near Barrow, Alaska, USA, was subjected to a 40-day incubation under anoxic conditions and analyzed before and after the incubation to determine changes of SOM composition. A CHO index based on molecular C, H, and O data was utilized to codify SOM components according to their observedmore » degradation potentials. Compounds with a CHO index score between –1 and 0 in a water-soluble fraction (WSF) demonstrated high degradation potential, with a highest shift of CHO index occurred in the N-containing group of compounds, while similar stoichiometries in a base-soluble fraction (BSF) did not. Additionally, compared with the classical H:C vs O:C van Krevelen diagram, CHO index allowed for direct visualization of the distribution of heteroatoms such as N in the identified SOM compounds. We demonstrate that CHO index is useful not only in characterizing arctic SOM at the molecular level but also enabling quantitative description of SOM degradation, thereby facilitating incorporation of the high resolution MS datasets to future mechanistic models of SOM degradation and prediction of greenhouse gas emissions.« less
  • Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon cycling, although the molecular details of these transformations remain unclear. This study reports the application of ultrahigh resolution mass spectrometry to profile the molecular composition of SOM and its degradation during a simulated warming experiment. A soil sample, collected near Barrow, Alaska, USA, was subjected to a 40-day incubation under anoxic conditions and analyzed before and after the incubation to determine changes of SOM composition. A CHO index based on molecular C, H, and O data was utilized to codify SOM components according to their observedmore » degradation potentials. Compounds with a CHO index score between 1 and 0 in a water-soluble fraction (WSF) demonstrated high degradation potential, with a highest shift of CHO index occurred in the N-containing group of compounds, while similar stoichiometries in a base-soluble fraction (BSF) did not. Additionally, compared with the classical H:C vs O:C van Krevelen diagram, CHO index allowed for direct visualization of the distribution of heteroatoms such as N in the identified SOM compounds. We demonstrate that CHO index is useful not only in characterizing arctic SOM at the molecular level but also enabling quantitative description of SOM degradation, thereby facilitating incorporation of the high resolution MS datasets to future mechanistic models of SOM degradation and prediction of greenhouse gas emissions.« less
  • Automated solid-phase extraction (SPE) with C18 and styrene-divinylbenzene cartridges in series was used for the preconcentration of non ionic polyethoxylated surfactants in tannery wastewater. Fractionated extracts were analyzed by LC-MS using Atmospheric Pressure Chemical Ionization (APCI) in the Positive and Negative Ion modes. Recoveries for nonionic surfactants were approximately of 72, 90 and 80% for polyethylene glycols, nonylphenol and alcohol ethoxylates in the polar, aromatic and medium polarity fractions, respectively. Data acquisition in the selected ion monitoring mode afforded limits of quantification from 0.1 to 0.8 {micro}g/l for tridecylic polyethoxylated alcohol and polyethoxylated glycol, respectively, in the complex tannery wastewaters.more » The tannery effluents investigated contained between 0.03 to 3.0 mg/l of polyethylene glycol and nonylphenol polyethoxylate, respectively.« less