skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Precision measurement of the $W$ boson decaying to $$\nu_\mu$$ charge asymmetry at a center of mass energy of 1.96-TeV using the D0 detector

Abstract

This dissertation describes a measurement of the muon charge asymmetry from W boson decays. The charge asymmetry provides useful information about the momentum distribution of u and d quarks inside the proton. The charge asymmetry was measured using ≈ 230 pb -1 of data collected between 2002 and 2004 using the DØ detector at the Tevatron collider at Fermi National Accelerator Laboratory. In the Tevatron, protons and antiprotons collide with a center of mass energy of 1.96 TeV. The signal consists of one high transverse momentum muon and missing transverse energy while the background which comes from other events also producing a high transverse momentum muon. As the charge asymmetry depends on the number of positive and negative muons from the W boson decay in each bin of pseudorapidity, the background are removed. The resultant distribution is compared with predictions from NLO calculations using the CTEQ6.1M and the MRST02 PDFs. This is the first approved result for the W charge asymmetry from DØ.

Authors:
 [1]
  1. Florida State U.
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
OSTI Identifier:
1415847
Report Number(s):
FERMILAB-THESIS-2006-54; UMI-32-32446
736634
DOE Contract Number:
AC02-07CH11359
Resource Type:
Thesis/Dissertation
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Sengupta, Sinjini. A Precision measurement of the $W$ boson decaying to $\nu_\mu$ charge asymmetry at a center of mass energy of 1.96-TeV using the D0 detector. United States: N. p., 2006. Web. doi:10.2172/1415847.
Sengupta, Sinjini. A Precision measurement of the $W$ boson decaying to $\nu_\mu$ charge asymmetry at a center of mass energy of 1.96-TeV using the D0 detector. United States. doi:10.2172/1415847.
Sengupta, Sinjini. Sun . "A Precision measurement of the $W$ boson decaying to $\nu_\mu$ charge asymmetry at a center of mass energy of 1.96-TeV using the D0 detector". United States. doi:10.2172/1415847. https://www.osti.gov/servlets/purl/1415847.
@article{osti_1415847,
title = {A Precision measurement of the $W$ boson decaying to $\nu_\mu$ charge asymmetry at a center of mass energy of 1.96-TeV using the D0 detector},
author = {Sengupta, Sinjini},
abstractNote = {This dissertation describes a measurement of the muon charge asymmetry from W boson decays. The charge asymmetry provides useful information about the momentum distribution of u and d quarks inside the proton. The charge asymmetry was measured using ≈ 230 pb-1 of data collected between 2002 and 2004 using the DØ detector at the Tevatron collider at Fermi National Accelerator Laboratory. In the Tevatron, protons and antiprotons collide with a center of mass energy of 1.96 TeV. The signal consists of one high transverse momentum muon and missing transverse energy while the background which comes from other events also producing a high transverse momentum muon. As the charge asymmetry depends on the number of positive and negative muons from the W boson decay in each bin of pseudorapidity, the background are removed. The resultant distribution is compared with predictions from NLO calculations using the CTEQ6.1M and the MRST02 PDFs. This is the first approved result for the W charge asymmetry from DØ.},
doi = {10.2172/1415847},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Jan 01 00:00:00 EST 2006},
month = {Sun Jan 01 00:00:00 EST 2006}
}

Thesis/Dissertation:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this thesis or dissertation.

Save / Share:
  • We present a measurement of the W boson charge asymmetry in pmore » $$\bar{p}$$ collisions using W →ev decays using 750 pb -1 of data collected with the D detector at the Fermilab Tevatron. The electron coverage is extended to |η| < 3.2 and is thus sensitive to W s generated with low and high x partons. We also measured the charge asymmetry for events with electron E T > 25 GeV, 25 < E T < 35 GeV and E T > 35 GeV. By dividing events into di erent electron E T regions, we can probe di erent W boson rapidity regions, and can provide more constraints on the parton distribution functions (PDFs). Theoretical predictions made using CTEQ6.6 and MRST2004NLO PDFs are compared with the measurement. Our measurement is the most precise W charge asymmetry measurement to date, and this single measurement is superior in precision to the combined world average of all previous W charge asymmetry measurements done at the Tevatron. The measured asymmetry errors are less than the CTEQ6.6 PDF uncertainty for most rapidity bins. The inclusion of our results will further constrain future PDF ts and improve the predictions.« less
  • By way of retaining the gauge invariance of the Standard Model (SM) and giving masses to the W ± and Z 0 bosons and the fermions, the Higgs mechanism predicts the existence of a neutral scalar bosonic particle, whose mass is not exactly known. The Higgs boson is the only experimentally unconfirmed SM particle to date. This thesis documents a search for the Higgs boson in pmore » $$\bar{p}$$ collisions at √s = 1.96 TeV at the Tevatron, using 360 ± pb -1 data collected by the Run II Collider Detector at Fermilab (CDF II), as part of the most important quest for contemporary particle physicists. The search was for a Higgs boson decaying to a pair of W ± bosons, where each W boson decays to an electron, a muon or a tau that further decays to an electron or a muon with associated neutrinos. Events with two charged leptons plus large missing energy were selected in data triggered on a high p$$\bar{p}$$ lepton and compared to the signal and backgrounds modeled using Monte Carlo and jet data. No signal-like excess was observed in data. Therefore, upper limits on the HWW production cross-section in the analyzed mass range were extracted using the binned likelihood maximum from distributions of dilepton azimuthal angle at 95% Bayesian credibility level (CL), as shown in the table below.« less
  • This thesis presents a measurement of the mass of the W boson using data collected during the 1992-93 collider run at the Fermilab Tevatron with the CDF detector.
  • Of the six quarks in the standard model the top quark is by far the heaviest: 35 times more massive than its partner the bottom quark and more than 130 times heavier than the average of the other five quarks. Its correspondingly small decay width means it tends to decay before forming a bound state. Of all quarks, therefore, the top is the least affected by quark confinement, behaving almost as a free quark. Its large mass also makes the top quark a key player in the realm of the postulated Higgs boson, whose coupling strengths to particles are proportional to their masses. Precision measurements of particle masses for e.g. the top quark and the W boson can hereby provide indirect constraints on the Higgs boson mass. Since in the standard model top quarks couple almost exclusively to bottom quarks (t → Wb), top quark decays provide a window on the standard model through the direct measurement of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element V tb. In the same way any lack of top quark decays into W bosons could imply the existence of decay channels beyond the standard model, for example charged Higgs bosons as expected in two-doublet Higgs models: t → H +b. Within the standard model top quark decays can be classified by the (lepton or quark) W boson decay products. Depending on the decay of each of the W bosons, tmore » $$\bar{t}$$ pair decays can involve either no leptons at all, or one or two isolated leptons from direct W → e$$\bar{v}$${sub e} and W → μ$$\bar{v}$$ μ decays. Cascade decays like b → Wc → e$$\bar{v}$$ ec can lead to additional non-isolated leptons. The fully hadronic decay channel, in which both Ws decay into a quark-antiquark pair, has the largest branching fraction of all t$$\bar{t}$$ decay channels and is the only kinematically complete (i.e. neutrino-less) channel. It lacks, however, the clear isolated lepton signature and is therefore hard to distinguish from the multi-jet QCD background. It is important to measure the cross section (or branching fraction) in each channel independently to fully verify the standard model. Top quark pair production proceeds through the strong interaction, placing the scene for top quark physics at hadron colliders. This adds an additional challenge: the huge background from multi-jet QCD processes. At the Tevatron, for example, t$$\bar{t}$$ production is completely hidden in light q$$\bar{q}$$ pair production. The light (i.e. not bottom or top) quark pair production cross section is six orders of magnitude larger than that for t$$\bar{t}$$ production. Even including the full signature of hadronic t$$\bar{t}$$ decays, two b-jets and four additional jets, the QCD cross section for processes with similar signature is more than five times larger than for t$$\bar{t}$$ production. The presence of isolated leptons in the (semi)leptonic t$$\bar{t}$$ decay channels provides a clear characteristic to distinguish the t$$\bar{t}$$ signal from QCD background but introduces a multitude of W- and Z-related backgrounds.« less