skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments

Abstract

Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for the first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bandsmore » arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.« less

Authors:
; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1415691
Report Number(s):
PNNL-SA-128188
Journal ID: ISSN 0022-4073; 453040142
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Quantitative Spectroscopy and Radiative Transfer; Journal Volume: 206; Journal Issue: C
Country of Publication:
United States
Language:
English

Citation Formats

Johnson, T. J., Aker, P. M., Scharko, N. K., and Williams, S. D. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments. United States: N. p., 2018. Web. doi:10.1016/j.jqsrt.2017.11.023.
Johnson, T. J., Aker, P. M., Scharko, N. K., & Williams, S. D. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments. United States. doi:10.1016/j.jqsrt.2017.11.023.
Johnson, T. J., Aker, P. M., Scharko, N. K., and Williams, S. D. 2018. "Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments". United States. doi:10.1016/j.jqsrt.2017.11.023.
@article{osti_1415691,
title = {Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments},
author = {Johnson, T. J. and Aker, P. M. and Scharko, N. K. and Williams, S. D.},
abstractNote = {Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for the first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bands arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.},
doi = {10.1016/j.jqsrt.2017.11.023},
journal = {Journal of Quantitative Spectroscopy and Radiative Transfer},
number = C,
volume = 206,
place = {United States},
year = 2018,
month = 2
}
  • Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm-1 range. Vibrational assignments of all fundamental modes are made for both molecules based on far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-transmore » conformer, but a few appear to be uniquely associated the s-cis conformer, notably ν16c at 730.90 cm-1, which displays a substantial intensity increase with temperature (62% upon going from 5 to 50 oC). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, ~doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.« less
  • Xylenes contain a blend of the ortho-, meta-, and para- isomers, and all are abundant contaminants in the ground, surface waters, and air. To better characterize xylene and to better enable its detection, we report high quality quantitative vapor-phase infrared spectra of all three isomers over the 540-6500 cm -1 range. All fundamental vibrational modes are assigned based on these vapor-phase infrared spectra, liquid-phase infrared and Raman spectra, along with density functional theory (DFT), ab initio MP2 and high energy-accuracy compound theoretical model (W1BD) calculations. Both MP2 and DFT predict a single conformer with C 2v symmetry for ortho-xylene, andmore » two conformers each for meta- and para-xylene, depending on the preferred orientations of the methyl groups. For meta-xylene the two conformers have C s and C 2 symmetry, and for para-xylene these conformers have C 2v or C 2h symmetry. Since the relative population of the two conformers is approximately 50% for both isomers and predicted frequencies and intensities are very similar for each conformer, we made an arbitrary choice to discuss the C s conformer for meta-xylene and the C 2v conformer for para-xylene. We report integrated band intensities for all isomers. Using the quantitative infrared data, we determine the global warming potential values of each isomer and discuss potential bands for atmospheric monitoring.« less
  • Glyoxal, methylglyoxal, and 2,3-butanedione (diacetyl) are all known biomass burning effluents and suspected aerosol precursors. Pressure-broadened quantitative infrared spectra of glyoxal, methylglyoxal, and diacetyl vapors covering the 520–6500 cm –1 range are reported at 0.112 cm –1 resolution, each with a composite spectrum derived from a minimum of 10 different sample pressures for the compound, representing some of the first quantitative intensity data for these analytes. Many vibrational assignments for methylglyoxal are reported for the first time, as are some near-IR and far-IR bands of glyoxal and diacetyl. To complete the vibrational assignments, the far-infrared spectra (25–600 cm –1) ofmore » all three vapors are also reported, those of methylglyoxal for the first time. Density functional theory and ab initio MP2 theory are used to help assign vibrational modes. Finally, potential bands for atmospheric monitoring are discussed.« less
  • Recently recorded quantitative IR spectra of a variety of gas-phase alkanes are shown to have integrated intensities in both the C-H stretching and C-H bending regions that depend linearly on the molecular size, i.e. the number of C-H bonds. This result is well predicted from CH4 to C15H32 by DFT computations of IR spectra at the B3LYP/6-31+G(d,p) level of DFT theory. A simple model predicting the absolute IR band intensities of alkanes based only on structural formula is proposed: For the C-H stretching band near 2930 cm-1 this is given by (in km/mol): CH¬_str = (34±3)*CH – (41±60) where CHmore » is number of C-H bonds in the alkane. The linearity is explained in terms of coordinated motion of methylene groups rather than the summed intensities of autonomous -CH2- units. The effect of alkyl chain length on the intensity of a C-H bending mode is explored and interpreted in terms of conformer distribution. The relative intensity contribution of a methyl mode compared to the total C-H stretch intensity is shown to be linear in the number of terminal methyl groups in the alkane, and can be used to predict quantitative spectra a priori based on structure alone.« less
  • Diiodomethane (CH2I2) photolysis in the presence of ozone is a suggested precursor to new particle aerosol formation, particularly in coastal areas. As part of the PNNL database of gas-phase infrared spectra, the quantitative absorption spectrum of CH2I2 has been acquired at 0.1 cm-1 resolution. Two strong b2 symmetry A-type bands at 584 and 1114 cm-1 are observed, but are not resolved at 760 Torr and appear as B-type. In contrast, the b1 symmetry C-type bands near 5953, 4426 and 3073 cm-1 are resolved with rotational structure, including Q-branches with widths ? 1 cm-1. The quantitative infrared and near-infrared vapor-phase spectramore » (600 - 10,000 cm-1) are reported for the first time and discussed in terms of ambient monitoring. FT-Raman spectra and ab initio calculations are used to complete vibrational assignments.« less