skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2 i as performance enhancement filler particles

Abstract

Phosphazene-based polymers were synthesized by using different pendant groups such as trifluoroethoxy (TFE), phenoxy (PHO) and octafluoropentoxy (OFP). High performance methoxyethoxyethoxy/cyclohexoxy (MEE/CH) based polyphosphazene was developed for the first time in literature using a mixed-substitution method. The structural, chemical, and thermal properties of these polymers were analyzed using several techniques such as Gel Permeation Chromatography (GPC), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Nuclear Magnetic Resonance (NMR). Significant differences in gas transport properties of gases have been observed between these pendant groups because of their differences in glass transition temperature and physical interaction with CO 2. For the first time, we report on the high performance of TFE polyphophazene based mixed matrix membranes (MMMs) using a SIFSIX-Cu-2i (SIFSIX) metal organic framework (MOF) as the filler particles. These MMMs showed a significant improvement in both CO 2 permeability and CO 2/N 2 selectivity compared to pure TFE polyphosphazene membranes. As a result, the excellent gas transport properties of these membranes make them very promising material for carbon capture applications.

Authors:
 [1];  [2];  [3];  [4];  [4];  [5];  [2];  [4];  [4];  [3]
  1. DOE National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); AECOM, Pittsburgh, PA (United States)
  2. Univ. of Pittsburgh, Pittsburgh, PA (United States)
  3. Pennsylvania State Univ., University Park, PA (United States)
  4. DOE National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
  5. DOE National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Carnegie Mellon Univ., Pittsburgh, PA (United States)
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1415616
Alternate Identifier(s):
OSTI ID: 1397078
Report Number(s):
A-CONTR-PUB-056
Journal ID: ISSN 0376-7388; PII: S0376738817303101; TRN: US1800843
Grant/Contract Number:  
FE0004000
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Membrane Science
Additional Journal Information:
Journal Volume: 535; Journal Issue: C; Journal ID: ISSN 0376-7388
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Polyphosphazene; Metal organic frameworks; Mixed matrix membranes; CO2 capture

Citation Formats

Venna, Surendar R., Spore, Alex, Tian, Zhicheng, Marti, Anne M., Albenze, Erik J., Nulwala, Hunaid B., Rosi, Nathaniel L., Luebke, David R., Hopkinson, David P., and Allcock, Harry R.. Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles. United States: N. p., 2017. Web. doi:10.1016/j.memsci.2017.04.033.
Venna, Surendar R., Spore, Alex, Tian, Zhicheng, Marti, Anne M., Albenze, Erik J., Nulwala, Hunaid B., Rosi, Nathaniel L., Luebke, David R., Hopkinson, David P., & Allcock, Harry R.. Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles. United States. doi:10.1016/j.memsci.2017.04.033.
Venna, Surendar R., Spore, Alex, Tian, Zhicheng, Marti, Anne M., Albenze, Erik J., Nulwala, Hunaid B., Rosi, Nathaniel L., Luebke, David R., Hopkinson, David P., and Allcock, Harry R.. Wed . "Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles". United States. doi:10.1016/j.memsci.2017.04.033. https://www.osti.gov/servlets/purl/1415616.
@article{osti_1415616,
title = {Polyphosphazene polymer development for mixed matrix membranes using SIFSIX-Cu-2i as performance enhancement filler particles},
author = {Venna, Surendar R. and Spore, Alex and Tian, Zhicheng and Marti, Anne M. and Albenze, Erik J. and Nulwala, Hunaid B. and Rosi, Nathaniel L. and Luebke, David R. and Hopkinson, David P. and Allcock, Harry R.},
abstractNote = {Phosphazene-based polymers were synthesized by using different pendant groups such as trifluoroethoxy (TFE), phenoxy (PHO) and octafluoropentoxy (OFP). High performance methoxyethoxyethoxy/cyclohexoxy (MEE/CH) based polyphosphazene was developed for the first time in literature using a mixed-substitution method. The structural, chemical, and thermal properties of these polymers were analyzed using several techniques such as Gel Permeation Chromatography (GPC), Thermal Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and Nuclear Magnetic Resonance (NMR). Significant differences in gas transport properties of gases have been observed between these pendant groups because of their differences in glass transition temperature and physical interaction with CO2. For the first time, we report on the high performance of TFE polyphophazene based mixed matrix membranes (MMMs) using a SIFSIX-Cu-2i (SIFSIX) metal organic framework (MOF) as the filler particles. These MMMs showed a significant improvement in both CO2 permeability and CO2/N2 selectivity compared to pure TFE polyphosphazene membranes. As a result, the excellent gas transport properties of these membranes make them very promising material for carbon capture applications.},
doi = {10.1016/j.memsci.2017.04.033},
journal = {Journal of Membrane Science},
number = C,
volume = 535,
place = {United States},
year = {Wed Apr 19 00:00:00 EDT 2017},
month = {Wed Apr 19 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: