skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO 2

Abstract

In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg 2+ and Al 3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg 2+ and Al 3+ insertion in anatase TiO 2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO 2. In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.

Authors:
 [1];  [2];  [3];  [4];  [5];  [5];  [6];  [7];  [8];  [9];  [6];  [10];  [2];  [3];  [2];  [2];  [11];  [11];  [1];  [2] more »;  [3] « less
  1. Technical University Berlin (Germany). The Electrochemical Energy, Catalysis, and Materials Science Laboratory, Department of Chemistry, Chemical Engineering Division
  2. Sorbonne Universités, Laboratoire PHENIX, Paris (France)
  3. (RS2E) (France)
  4. University of Bath (United Kingdom). Dept. of Chemistry
  5. Université Bretagne Loire, Université du Maine, UMR CNRS, Institut des Molécules et des Matériaux du Mans (IMMM), Avenue Olivier Messiaen (France)
  6. Réseau sur le Stockage Electrochimique de l’Energie (RS2E) (France)
  7. (France). Laboratoire de Réactivité et Chimie des Solides
  8. ALISTORE-European Research Institute (France)
  9. (the Netherlands). Thermo Fisher Scientific, Materials and Structural Analysis
  10. (France)
  11. Argonne National Lab. (ANL), Argonne, IL (United States). X-ray Science Division, Advanced Photon Source
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division; Bundesministerium für Bildung und Forschung (BMBF); Agence Nationale de la recherche (ANR)
OSTI Identifier:
1415479
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Materials
Additional Journal Information:
Journal Volume: 16; Journal Issue: 11; Journal ID: ISSN 1476-1122
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 25 ENERGY STORAGE

Citation Formats

Koketsu, Toshinari, Ma, Jiwei, Réseau sur le Stockage Electrochimique de l’Energie, Morgan, Benjamin J., Body, Monique, Legein, Christophe, Dachraoui, Walid, Université de Picardie Jules Verne, Giannini, Mattia, Achtseweg Noord 5, Demortiere, Arnaud, ALISTORE-European Research Institute, Salanne, Mathieu, Réseau sur le Stockage Electrochimique de l’Energie, Dardoize, Francois, Groult, Henri, Borkiewicz, Olaf J., Chapman, Karena W., Strasser, Peter, Dambournet, Damien, and Réseau sur le Stockage Electrochimique de l’Energie. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. United States: N. p., 2017. Web. doi:10.1038/nmat4976.
Koketsu, Toshinari, Ma, Jiwei, Réseau sur le Stockage Electrochimique de l’Energie, Morgan, Benjamin J., Body, Monique, Legein, Christophe, Dachraoui, Walid, Université de Picardie Jules Verne, Giannini, Mattia, Achtseweg Noord 5, Demortiere, Arnaud, ALISTORE-European Research Institute, Salanne, Mathieu, Réseau sur le Stockage Electrochimique de l’Energie, Dardoize, Francois, Groult, Henri, Borkiewicz, Olaf J., Chapman, Karena W., Strasser, Peter, Dambournet, Damien, & Réseau sur le Stockage Electrochimique de l’Energie. Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. United States. doi:10.1038/nmat4976.
Koketsu, Toshinari, Ma, Jiwei, Réseau sur le Stockage Electrochimique de l’Energie, Morgan, Benjamin J., Body, Monique, Legein, Christophe, Dachraoui, Walid, Université de Picardie Jules Verne, Giannini, Mattia, Achtseweg Noord 5, Demortiere, Arnaud, ALISTORE-European Research Institute, Salanne, Mathieu, Réseau sur le Stockage Electrochimique de l’Energie, Dardoize, Francois, Groult, Henri, Borkiewicz, Olaf J., Chapman, Karena W., Strasser, Peter, Dambournet, Damien, and Réseau sur le Stockage Electrochimique de l’Energie. Mon . "Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2". United States. doi:10.1038/nmat4976. https://www.osti.gov/servlets/purl/1415479.
@article{osti_1415479,
title = {Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2},
author = {Koketsu, Toshinari and Ma, Jiwei and Réseau sur le Stockage Electrochimique de l’Energie and Morgan, Benjamin J. and Body, Monique and Legein, Christophe and Dachraoui, Walid and Université de Picardie Jules Verne and Giannini, Mattia and Achtseweg Noord 5 and Demortiere, Arnaud and ALISTORE-European Research Institute and Salanne, Mathieu and Réseau sur le Stockage Electrochimique de l’Energie and Dardoize, Francois and Groult, Henri and Borkiewicz, Olaf J. and Chapman, Karena W. and Strasser, Peter and Dambournet, Damien and Réseau sur le Stockage Electrochimique de l’Energie},
abstractNote = {In contrast to monovalent lithium or sodium ions, the reversible insertion of multivalent ions such as Mg2+ and Al3+ into electrode materials remains an elusive goal. In this work, we demonstrate a new strategy to achieve reversible Mg2+ and Al3+ insertion in anatase TiO2, achieved through aliovalent doping, to introduce a large number of titanium vacancies that act as intercalation sites. We present a broad range of experimental and theoretical characterizations that show a preferential insertion of multivalent ions into titanium vacancies, allowing a much greater capacity to be obtained compared to pure TiO2. In conclusion, this result highlights the possibility to use the chemistry of defects to unlock the electrochemical activity of known materials providing a new strategy for the chemical design of materials for practical multivalent batteries.},
doi = {10.1038/nmat4976},
journal = {Nature Materials},
number = 11,
volume = 16,
place = {United States},
year = {Mon Sep 18 00:00:00 EDT 2017},
month = {Mon Sep 18 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: