skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Failure Diameter Resolution Study

Abstract

Previously the SURFplus reactive burn model was calibrated for the TATB based explosive PBX 9502. The calibration was based on fitting Pop plot data, the failure diameter and the limiting detonation speed, and curvature effect data for small curvature. The model failure diameter is determined utilizing 2-D simulations of an unconfined rate stick to find the minimum diameter for which a detonation wave propagates. Here we examine the effect of mesh resolution on an unconfined rate stick with a diameter (10mm) slightly greater than the measured failure diameter (8 to 9 mm).

Authors:
 [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1415358
Report Number(s):
LA-UR-17-31380
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE; failure diameter; SURFplus; PBX 9502

Citation Formats

Menikoff, Ralph. Failure Diameter Resolution Study. United States: N. p., 2017. Web. doi:10.2172/1415358.
Menikoff, Ralph. Failure Diameter Resolution Study. United States. doi:10.2172/1415358.
Menikoff, Ralph. 2017. "Failure Diameter Resolution Study". United States. doi:10.2172/1415358. https://www.osti.gov/servlets/purl/1415358.
@article{osti_1415358,
title = {Failure Diameter Resolution Study},
author = {Menikoff, Ralph},
abstractNote = {Previously the SURFplus reactive burn model was calibrated for the TATB based explosive PBX 9502. The calibration was based on fitting Pop plot data, the failure diameter and the limiting detonation speed, and curvature effect data for small curvature. The model failure diameter is determined utilizing 2-D simulations of an unconfined rate stick to find the minimum diameter for which a detonation wave propagates. Here we examine the effect of mesh resolution on an unconfined rate stick with a diameter (10mm) slightly greater than the measured failure diameter (8 to 9 mm).},
doi = {10.2172/1415358},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Technical Report:

Save / Share:
  • SURFplus is a reactive burn model for high explosives aimed at modelling shock initiation and propagation of detonation waves. It utilizes the SURF model for the fast hot-spot reaction plus a slow reaction for the energy released by carbon clustering. A feature of the SURF model is that there is a partially decoupling between burn rate parameters and detonation wave properties. Previously, parameters for PBX 9502 that control shock ini- tiation had been calibrated to Pop plot data (distance-of-run to detonation as a function of shock pressure initiating the detonation). Here burn rate parameters for the high pres- sure regimemore » are adjusted to t the failure diameter and the limiting detonation speed just above the failure diameter. Simulated results are shown for an uncon ned rate stick when the 9502 diameter is slightly above and slightly below the failure diameter. Just above the failure diameter, in the rest frame of the detonation wave, the front is sonic at the PBX/air interface. As a consequence, the lead shock in the neighborhood of the interface is supported by the detonation pressure in the interior of the explosive rather than the reaction immediately behind the front. In the interior, the sonic point occurs near the end of the fast hot-spot reaction. Consequently, the slow carbon clustering reaction can not a ect the failure diameter. Below the failure diameter, the radial extent of the detonation front decreases starting from the PBX/air interface. That is, the failure starts at the PBX boundary and propagates inward to the axis of the rate stick.« less
  • The WC-1 and WC-3 experiments were conducted using a dry, 1:10 linear scale model of the Zion reactor cavity to obtain baseline data for comparison to future experiments that will have water in the cavity. WC-1 and WC-3 were performed with similar initial conditions except for the exit hole between the melt generator and the scaled model of the reactor cavity. For both experiments the molten core debris was simulated by a thermitically generated melt formed from 50 kg of iron oxide/aluminum/chromium powders. After the thermite was ignited in WC-1, the melt was forcibly ejected by 374 moles of slightlymore » superheated steam at an initial driving pressure of 4.6 MPa through an exit hole with an actual diameter of 4.14 cm into the scaled model of the reactor cavity. In WC-3, the molten thermite was ejected by 300 moles of slightly superheated steam at an initial driving pressure of 3.8 MPa through an exit hole with an actual diameter of 10.1 cm into the scaled model of the reactor cavity. Because of the larger exit hole diameter, WC-3 had a shorter blowdown time than WC-1, 0.8's compared to 3.0's. WC-3 also had a higher debris velocity than WC-1, 54 m/s compared to 17.5 m/s. Posttest sieve analysis of debris recovered from the Surtsey vessel gave identical results in WC-1 and WC-3 for the sieve mass median particle diameter, i.e. 1.45 mm. The total mass ejected into the Surtsey vessel in WC-3 was 45.0 kg compared to 47.9 kg in WC-1. The peak pressure increase in Surtsey due to the high-pressure melt ejection (HPME) was 0.275 MPa in WC-3 and 0.272 in WC-1. Steam/metal reactions produced 181 moles of of hydrogen in WC-3 and 145 moles of hydrogen in WC-1.« less
  • The WC-1 and WC-3 experiments were conducted using a dry, 1:10 linear scale model of the Zion reactor cavity to obtain baseline data for comparison to future experiments that will have water in the cavity. WC-1 and WC-3 were performed with similar initial conditions except for the exit hole between the melt generator and the scaled model of the reactor cavity. For both experiments the molten core debris was simulated by a thermitically generated melt formed from 50 kg of iron oxide/aluminum/chromium powders. After the thermite was ignited in WC-1, the melt was forcibly ejected by 374 moles of slightlymore » superheated steam at an initial driving pressure of 4.6 MPa through an exit hole with an actual diameter of 4.14 cm into the scaled model of the reactor cavity. In WC-3, the molten thermite was ejected by 300 moles of slightly superheated steam at an initial driving pressure of 3.8 MPa through an exit hole with an actual diameter of 10.1 cm into the scaled model of the reactor cavity. Because of the larger exit hole diameter, WC-3 had a shorter blowdown time than WC-1, 0.8`s compared to 3.0`s. WC-3 also had a higher debris velocity than WC-1, 54 m/s compared to 17.5 m/s. Posttest sieve analysis of debris recovered from the Surtsey vessel gave identical results in WC-1 and WC-3 for the sieve mass median particle diameter, i.e. 1.45 mm. The total mass ejected into the Surtsey vessel in WC-3 was 45.0 kg compared to 47.9 kg in WC-1. The peak pressure increase in Surtsey due to the high-pressure melt ejection (HPME) was 0.275 MPa in WC-3 and 0.272 in WC-1. Steam/metal reactions produced 181 moles of of hydrogen in WC-3 and 145 moles of hydrogen in WC-1.« less
  • The Colville Study was developed in 1994 to identify and evaluate a series of management options for achieving ecosystem objectives in dense stands of small diameter trees while also producing wood products. The Colville National Forest selected the Rocky II Timber Sale as an example of this type of stand that needed management to achieve the following goals: (1) create late successional forest structure, (2) decrease forest health risk from fire, insects, and disease, (3) improve wildlife habitat by providing large green trees and snags, and (4) improve stand aesthetics by decreasing stand density. The Colville Study was divided intomore » four technical focus areas: Silviculture and Ecology, Forest Operations, Timber Conversion, and Economics.« less
  • Generic Safety Issue (GSI)-29 deals with staff concerns about public risk due to degradation or failure of safety-related bolting in nuclear power plants. The issue was initiated in November 1982. Value-impact studies of a mandatory program on safety-related bolting for operating plants were inconclusive: therefore, additional regulatory requirements for operating plants could not be justified in accordance with provisions of 10 CFR 50.109. In addition, based on operating experience with bolting in both nuclear and conventional power plants, the actions already taken through bulletins, generic letters, and information notices, and the industry-proposed actions, the staff concluded that a sufficient technicalmore » basis exists for the resolution of GSI-29. The staff further concluded that leakage of bolted pressure joints is possible but catastrophic failure of a reactor coolant pressure boundary joint that will lead to significant accident sequences is highly unlikely. For future plants, it was concluded that a new Standard Review Plant section should be developed to codify existing bolting requirements and industry-developed initiatives. 9 refs., 1 tab.« less