skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Innovative Patient Room Lighting System with Integrated Spectrally Adaptive Control

Abstract

In December of 2013, the U.S. Department of Energy’s SSL R&D Program released a Funding Opportunity Announcement (FOA), that for the first time, contained opportunities for comprehensive application-specific system development. The FOA included opportunities for two applications, one of which was a Patient Room. Philips Lighting Research North America, submitted a proposal for the Patient Room application, and was selected for the complete project award. The award amount was for $497,127, with a Philips Research co-funding commitment 165,709 dollars. The total project value was 662,836 dollars. This project sought to redefine lighting for the patient room application. The goal was to deliver an innovative LED patient suite (patient room and bathroom) lighting system solution that was 40% more energy-efficient than traditional fluorescent incumbent technologies, and would meet all the visual and non-visual needs of patients, caregivers and visitors, and improve the patient experience. State-of-the-art multichannel LED platforms and control technologies that would provide spectral tuning and become part of an intelligent, connected lighting system drove the solution. The project was scoped into four main task areas that included a) System Concept Creation, b) Identification of the Luminaire Portfolio, c) Development of the Connected Lighting Infrastructure, and d) System Performance Validation.more » Each of the four main tasks were completed and validated extensively over the course the 2 ½ year project. The system concept was created by first developing a lighting design that demonstrated best practices for patient room lighting – illuminance and uniformity for task performance, reduced glare, and convenient controls, in addition to giving patients control over the lighting in their environment. A framework was defined to deliver circadian support via software behaviors. Through that process luminaires were identified from the Philips portfolio that were adaptable – by their form, dimensions, and optical materials – to mix multicolor LED platforms uniformly and deliver target design lumen levels. The Blue Sky luminaire was selected for the patient bed area to give the illusion of skylight while providing white light on the patient bed. Luminaires used existing 2-channel tunable white LED boards, and newly developed 4-channel LED boards. Red-Orange, Blue, Green, and Blue-shifted Yellow LED chips were selected based on spectral characteristics and their ability to produce high quality white light. 4-channel Power over Ethernet (PoE) drivers were developed and firmware written so they would communicate with both 2- and 4-channel boards. These components formed the backbone of the connected lighting infrastructure. Software, flexible and nuanced in its complexity, was written to set behaviors for myriad lighting scenes in the room throughout the 24 hour day – and all could be overridden by manual controls. This included a dynamic tunable white program, three color changing automatic programs that simulated degrees of sunrise to sunset palettes, and an amber night lighting system that offered visual cues for postural stability to minimize the risk of falls. All programs were carefully designed to provide visual comfort for all occupants, support critical task performance for staff, and to support the patient’s 24hr rhythms. A full scale mockup room was constructed in the Philips Cambridge Lab. The lighting system was installed, tested and functionality demonstrated to ensure smooth operation of system components – luminaires, drivers, PoE switches, wall controls, patient remote, and daylight and occupancy sensors. How did the system perform? It met visual criteria, confirmed by calculations, simulations and measurements in the field. It met non-visual criteria, confirmed by setting circadian stimulus (CS) targets and performing calculations using the calculator developed by the Lighting Research Center. Finally, human factors validation studies were conducted to gain insight from real end users in the healthcare profession; surveys were administered, data analyzed, and audio comments captured. The general consensus was positive, with requests to pilot the system in their hospitals. The importance of the research completed under this grant is that it allowed the exploration and development of a unique lighting system, one that would deliver a blend of visual and non-visual criteria in patient room design for today’s healthcare environment. The research investigated the area of multichannel LED technology, multichannel Power over Ethernet (PoE) drivers and their integration with automatic and manual controls as a system – uncovering and meeting challenges along the way. It married visual needs of patients and staff with support for 24 hour rhythms, placing value on the wellbeing of the patient – while successfully saving energy over incumbent technologies. Indications are that the market is ready and willing to invest – multiple healthcare facilities are in line to pilot this system, recognizing its value beyond energy to patient and staff well-being. Its value to the public can best be expressed by a patient support coordinator who, after spending several hours in the room being immersed in the lighting, analyzing all its features, commented: “This re-writes lighting for healthcare”.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Philips Lighting North America Corporation, Cambridge, MA (United States)
Publication Date:
Research Org.:
Philips Lighting North America Corporation, Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1415279
Report Number(s):
DOE-PL-0006704
DOE Contract Number:
EE0006704
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; Lighting; solid state lighting; SSL; spectral tuning; patient room; human centric lighting; circadian rhythm; energy efficiency; efficacy

Citation Formats

Maniccia, Dorene A., Rizzo, Patricia, Kim, James, Esposito, Tony, and Ziembienski, Dan. Innovative Patient Room Lighting System with Integrated Spectrally Adaptive Control. United States: N. p., 2017. Web.
Maniccia, Dorene A., Rizzo, Patricia, Kim, James, Esposito, Tony, & Ziembienski, Dan. Innovative Patient Room Lighting System with Integrated Spectrally Adaptive Control. United States.
Maniccia, Dorene A., Rizzo, Patricia, Kim, James, Esposito, Tony, and Ziembienski, Dan. Fri . "Innovative Patient Room Lighting System with Integrated Spectrally Adaptive Control". United States. doi:.
@article{osti_1415279,
title = {Innovative Patient Room Lighting System with Integrated Spectrally Adaptive Control},
author = {Maniccia, Dorene A. and Rizzo, Patricia and Kim, James and Esposito, Tony and Ziembienski, Dan},
abstractNote = {In December of 2013, the U.S. Department of Energy’s SSL R&D Program released a Funding Opportunity Announcement (FOA), that for the first time, contained opportunities for comprehensive application-specific system development. The FOA included opportunities for two applications, one of which was a Patient Room. Philips Lighting Research North America, submitted a proposal for the Patient Room application, and was selected for the complete project award. The award amount was for $497,127, with a Philips Research co-funding commitment 165,709 dollars. The total project value was 662,836 dollars. This project sought to redefine lighting for the patient room application. The goal was to deliver an innovative LED patient suite (patient room and bathroom) lighting system solution that was 40% more energy-efficient than traditional fluorescent incumbent technologies, and would meet all the visual and non-visual needs of patients, caregivers and visitors, and improve the patient experience. State-of-the-art multichannel LED platforms and control technologies that would provide spectral tuning and become part of an intelligent, connected lighting system drove the solution. The project was scoped into four main task areas that included a) System Concept Creation, b) Identification of the Luminaire Portfolio, c) Development of the Connected Lighting Infrastructure, and d) System Performance Validation. Each of the four main tasks were completed and validated extensively over the course the 2 ½ year project. The system concept was created by first developing a lighting design that demonstrated best practices for patient room lighting – illuminance and uniformity for task performance, reduced glare, and convenient controls, in addition to giving patients control over the lighting in their environment. A framework was defined to deliver circadian support via software behaviors. Through that process luminaires were identified from the Philips portfolio that were adaptable – by their form, dimensions, and optical materials – to mix multicolor LED platforms uniformly and deliver target design lumen levels. The Blue Sky luminaire was selected for the patient bed area to give the illusion of skylight while providing white light on the patient bed. Luminaires used existing 2-channel tunable white LED boards, and newly developed 4-channel LED boards. Red-Orange, Blue, Green, and Blue-shifted Yellow LED chips were selected based on spectral characteristics and their ability to produce high quality white light. 4-channel Power over Ethernet (PoE) drivers were developed and firmware written so they would communicate with both 2- and 4-channel boards. These components formed the backbone of the connected lighting infrastructure. Software, flexible and nuanced in its complexity, was written to set behaviors for myriad lighting scenes in the room throughout the 24 hour day – and all could be overridden by manual controls. This included a dynamic tunable white program, three color changing automatic programs that simulated degrees of sunrise to sunset palettes, and an amber night lighting system that offered visual cues for postural stability to minimize the risk of falls. All programs were carefully designed to provide visual comfort for all occupants, support critical task performance for staff, and to support the patient’s 24hr rhythms. A full scale mockup room was constructed in the Philips Cambridge Lab. The lighting system was installed, tested and functionality demonstrated to ensure smooth operation of system components – luminaires, drivers, PoE switches, wall controls, patient remote, and daylight and occupancy sensors. How did the system perform? It met visual criteria, confirmed by calculations, simulations and measurements in the field. It met non-visual criteria, confirmed by setting circadian stimulus (CS) targets and performing calculations using the calculator developed by the Lighting Research Center. Finally, human factors validation studies were conducted to gain insight from real end users in the healthcare profession; surveys were administered, data analyzed, and audio comments captured. The general consensus was positive, with requests to pilot the system in their hospitals. The importance of the research completed under this grant is that it allowed the exploration and development of a unique lighting system, one that would deliver a blend of visual and non-visual criteria in patient room design for today’s healthcare environment. The research investigated the area of multichannel LED technology, multichannel Power over Ethernet (PoE) drivers and their integration with automatic and manual controls as a system – uncovering and meeting challenges along the way. It married visual needs of patients and staff with support for 24 hour rhythms, placing value on the wellbeing of the patient – while successfully saving energy over incumbent technologies. Indications are that the market is ready and willing to invest – multiple healthcare facilities are in line to pilot this system, recognizing its value beyond energy to patient and staff well-being. Its value to the public can best be expressed by a patient support coordinator who, after spending several hours in the room being immersed in the lighting, analyzing all its features, commented: “This re-writes lighting for healthcare”.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jun 02 00:00:00 EDT 2017},
month = {Fri Jun 02 00:00:00 EDT 2017}
}

Technical Report:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item. Keep in mind that many technical reports are not cataloged in WorldCat.

Save / Share:
  • The illumination in the control rooms of many operating nuclear plants falls below the levels specified in the NUREG-0700 guidelines. However, a close examination of the research literature upon which these guidelines were based revealed that the underlying human performance data were acquired with laboratory conditions and with tasks very different from those typically found in control rooms. There were three objectives of the present study: to develop an empirical method for investigating performance, under a wide range of illumination levels, with tasks selected to sample the functions and abilities that are representative of process control operations; to gather pilotmore » empirical data regarding the levels of illumination sufficient for performing tasks analogous to those performed in control rooms; and to make recommendations for more extensive future studies of lighting effects on operator performance. Results are presented and discussed. 23 refs., 5 figs.« less
  • This study investigates control strategies for coordinating the variable solar-optical properties of a dynamic building envelope system with a daylight controlled electric lighting system to reduce electricity consumption and increase comfort in the perimeter zone of commercial buildings. Control strategy design can be based on either simple, instantaneous measured data, or on complex, predictive algorithms that estimate the energy consumption for a selected operating state of the dynamic envelope and lighting system. The potential benefits of optimizing the operation of a dynamic envelope and lighting system are (1) significant reductions in electrical energy end-uses - lighting, and cooling due tomore » solar and lighting heat gains - over that achieved by conventional static envelope and lighting systems, (2) significant reductions in peak demand, and (3) increased occupant visual and thermal comfort. The DOE-2 building energy simulation program was used to model two dynamic envelope and lighting systems, an automated venetian blind and an electrochromic glazing system, and their control strategies under a range of building conditions. The energy performance of simple control strategies are compared to the optimum performance of a theoretical envelope and lighting system to determine the maximum potential benefit of using more complex, predictive control algorithms. Results indicate that (1) predictive control algorithms may significantly increase the energy-efficiency of systems with non-optimal solar-optical properties such as the automated venetian blind, and (2) simpler, non-predictive control strategies may suffice for more advanced envelope systems 1 incorporating spectrally selective, narrow-band electrochromic coatings.« less
  • This Volume 1 of the final report on RP2665-1 contains two parts. part 1 consists of the following: (1) a literature review of real-time parameter identification algorithms which may be used in self-tuning adaptive control; (2) a description of mathematical discrete-time models that are linear in the parameters and that are useful for self-tuning adaptive control; (3) detailed descriptions of several variations of recursive-least-squares algorithms (RLS algorithms) and a unified representation of some of these algorithms; (4) a new variation of RLS called Corrector Least Squares (CLS); (5) a set of practical issues that need to be addressed in themore » implementation of RLS-based algorithms; (6) a set of simulation examples that illustrate properties of the identification methods; and (7) appendices With FORTRAN listings of several identification codes. Part 2 of this volume addresses the problem of damping electromechanical oscillations in power systems using advanced control theory. Two control strategies are developed. Controllers are then applied to a power system as power system stabilizer (PSS) units. The primary strategy is a decentralized indirect adaptive control scheme where multiple self-tuning adaptive controllers are coordinated. This adaptive scheme is presented in a general format and the stabilizing properties are demonstrated using examples. Both the adaptive and the conventional strategies are applied to a 17-machine computer-simulated power system. PSS units are applied to four generators in the system. Detailed simulation results are presented that show the feasibility and properties of both control schemes. FORTRAN codes for the control simulations are given in appendices of Part 2, as also are FORTRAN codes for the Prony identification method.« less
  • The report examines current protection practices on electric power transmission networks, their limitations, and the restrictions placed upon the protective systems by the current state of the technology. The field of digital computer based relaying is reviewed, and it is shown that computer relays with communication capability offer a substantial opportunity to change many aspects of relay systems for the better. In particular, the relay systems can be made responsive to changes taking place in the power system. This concept is labeled Adaptive Relaying,'' whereby relays and protective systems adapt themselves to changing power system condition. Several opportunities for adaptivemore » relaying are revealed. In each case a technological assessment of the needs and feasibility of the adaptive approach is made. Impact of failures of the adaptive features on the system as a whole is discussed. Safe fall-back positions are discussed. Also considered are coordination aspects of adaptive and non-adaptive relaying functions within the same system. The report concludes with a conclusions section which includes a look at the directions for future research in this field. 43 refs., 17 figs., 1 tab.« less
  • This report provides results from an evaluation PNNL conducted of a spectrally enhanced lighting demonstration project. PNNL performed field measurements and occupant surveys at three office buildings in California before and after lighting retrofits were made in August and December 2005. PNNL measured the following Overhead lighting electricity demand and consumption, Light levels in the workspace, Task lighting use, and Occupant ratings of satisfaction with the lighting. Existing lighting, which varied in each building, was replaced with lamps with correlated color temperature (CCT) of 5000 Kelvin, color rendering index (CRI) of 85, of varying wattages, and lower ballast factor electronicmore » ballasts. The demonstrations were designed to decrease lighting power loads in the three buildings by 22-50 percent, depending on the existing installed lamps and ballasts. The project designers hypothesized that this reduction in electrical loads could be achieved by the change to higher CCT lamps without decreasing occupant satisfaction with the lighting.« less