skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First Principle Estimation of Geochemically Important Transition Metal Oxide Properties: Structure and Dynamics of the Bulk, Surface and Mineral/Aqueous Fluid Interface

Abstract

Reactions in the mineral surface/reservoir fluid interface control many geochemical processes such as the dissolution and growth of minerals (Yanina and Rosso 2008), heterogeneous oxidation/reduction (Hochella 1990, Brown 2001, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008), and inorganic respiration (Newman 2010). Key minerals involved in these processes are the transition metal oxides and oxyhydroxides (e.g., hematite, Fe2O3, and goethite, FeOOH)(Brown, Henrich et al. 1999, Brown 2001, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008). To interpret and predict these processes, it is necessary to have a high level of understanding of the interactions between the formations containing these minerals and their reservoir fluids. However, these are complicated chemical events occurring under a wide range of T, P, and X conditions and the interpretation is complicated by the highly heterogeneous nature of natural environments (Hochella 1990, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008) and the electronic and structural complexity of the oxide materials involved(Cox 1992, Kotliar and Vollhardt 2004, Navrotsky, Mazeina et al. 2008). In addition, also because of the complexity of the minerals involved and the heterogeneous nature of natural systems, the direct observation of these reactions at the atomic level ismore » experimentally extremely difficult. Theoretical simulations will provide important support for analysis of the geochemistry of the mineral surface/fluid region as well as provide essential tools to extrapolate laboratory measurements to the field environment.« less

Authors:
; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1415096
Report Number(s):
PNNL-SA-130898
49177; 49691; KC0302060
DOE Contract Number:
AC05-76RL01830
Resource Type:
Book
Resource Relation:
Related Information: Molecular Modeling of Geochemical Reactions: An Introduction, 107-149
Country of Publication:
United States
Language:
English
Subject:
Environmental Molecular Sciences Laboratory

Citation Formats

Chen, Ying, Bylaska, Eric J., and Weare, John H. First Principle Estimation of Geochemically Important Transition Metal Oxide Properties: Structure and Dynamics of the Bulk, Surface and Mineral/Aqueous Fluid Interface. United States: N. p., 2016. Web. doi:10.1002/9781118845226.ch4.
Chen, Ying, Bylaska, Eric J., & Weare, John H. First Principle Estimation of Geochemically Important Transition Metal Oxide Properties: Structure and Dynamics of the Bulk, Surface and Mineral/Aqueous Fluid Interface. United States. doi:10.1002/9781118845226.ch4.
Chen, Ying, Bylaska, Eric J., and Weare, John H. 2016. "First Principle Estimation of Geochemically Important Transition Metal Oxide Properties: Structure and Dynamics of the Bulk, Surface and Mineral/Aqueous Fluid Interface". United States. doi:10.1002/9781118845226.ch4.
@article{osti_1415096,
title = {First Principle Estimation of Geochemically Important Transition Metal Oxide Properties: Structure and Dynamics of the Bulk, Surface and Mineral/Aqueous Fluid Interface},
author = {Chen, Ying and Bylaska, Eric J. and Weare, John H.},
abstractNote = {Reactions in the mineral surface/reservoir fluid interface control many geochemical processes such as the dissolution and growth of minerals (Yanina and Rosso 2008), heterogeneous oxidation/reduction (Hochella 1990, Brown 2001, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008), and inorganic respiration (Newman 2010). Key minerals involved in these processes are the transition metal oxides and oxyhydroxides (e.g., hematite, Fe2O3, and goethite, FeOOH)(Brown, Henrich et al. 1999, Brown 2001, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008). To interpret and predict these processes, it is necessary to have a high level of understanding of the interactions between the formations containing these minerals and their reservoir fluids. However, these are complicated chemical events occurring under a wide range of T, P, and X conditions and the interpretation is complicated by the highly heterogeneous nature of natural environments (Hochella 1990, Hochella, Lower et al. 2008, Navrotsky, Mazeina et al. 2008) and the electronic and structural complexity of the oxide materials involved(Cox 1992, Kotliar and Vollhardt 2004, Navrotsky, Mazeina et al. 2008). In addition, also because of the complexity of the minerals involved and the heterogeneous nature of natural systems, the direct observation of these reactions at the atomic level is experimentally extremely difficult. Theoretical simulations will provide important support for analysis of the geochemistry of the mineral surface/fluid region as well as provide essential tools to extrapolate laboratory measurements to the field environment.},
doi = {10.1002/9781118845226.ch4},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 8
}

Book:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share:
  • We show that despite very similar crystallographic properties and work function values in the bulk, epitaxial Fe and Cr metallizations on Nb:SrTiO3(001) generate completely different heterojunction electronic properties. Cr is Ohmic whereas Fe forms a Schottky barrier with a barrier height of 0.50 eV. This contrast arises because of differences in interface chemistry. In contrast to Cr [Chambers, S. A. et al., Adv. Mater. 2013, 25, 4001.], Fe exhibits a +2 oxidation state and occupies Ti sites in the perovskite lattice, resulting in negligible charge transfer to Ti, upward band bending, and Schottky barrier formation. The differences between Cr andmore » Fe are understood by performing first-principles calculations of the energetics of defect formation which corroborate the observed interface chemistry and structure.« less
  • Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches tomore » important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed Neutron Source facility of the Argonne National Lab, and Dr. A. Faraone at the NIST Center for Neutron Research. A manuscript reporting the first results of these experiments, which are highly complimentary to our previous NMR, X-ray, and infra-red results for these phases, is currently in preparation. In total, in 2006-2007 our work has resulted in the publication of 14 peer-reviewed research papers. We also devoted considerable effort to making our work known to a wide range of researchers, as indicated by the 24 contributed abstracts and 14 invited presentations.« less
  • United States Department of Energy grant DE-FG02-10ER16128, “Computational and Spectroscopic Investigations of the Molecular Scale Structure and Dynamics of Geologically Important Fluids and Mineral-Fluid Interfaces” (Geoffrey M. Bowers, P.I.) focused on developing a molecular-scale understanding of processes that occur in fluids and at solid-fluid interfaces using the combination of spectroscopic, microscopic, and diffraction studies with molecular dynamics computer modeling. The work is intimately tied to the twin proposal at Michigan State University (DOE DE-FG02-08ER15929; same title: R. James Kirkpatrick, P.I. and A. Ozgur Yazaydin, co-P.I.).
  • Jed D. Christensen of the Office of Surface Mining Reclamation and Enforcement, Department of the Interior, was the principal witness at a hearing on S. 643, which amends the Surface Mining Control and Reclamation Act of 1977. The amendment would allow states to set aside as much as 10% from the reclamation trust fund to apply to abandoned sites. Senators speaking in favor of the bill reported problems with obtaining home loans and insurance due to subsidence from abandoned sites. Christensen supported the bill in principle, but noted possible problems with handling interest and the actual transfer of the money.more » He also noted a possible breakdown in regulation with the current wording of the bill. Additional material submitted for the record from representatives and officials of the State of Wyoming follows the text of S. 643 and the testimony of the five witnesses.« less