skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing

Abstract

The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pour tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O 2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets,more » surface passivation, and to prevent coalescence of the resulting powder.« less

Authors:
 [1];  [2]
  1. Ames Lab., Ames, IA (United States)
  2. Alcoa Inc., Pittsburgh, PA (United States)
Publication Date:
Research Org.:
Ames Laboratory (AMES), Ames, IA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1415042
Report Number(s):
AL-CRADA-2014-03
DOE Contract Number:
AC02-07CH11358
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Anderson, Iver, and Siemon, John. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing. United States: N. p., 2017. Web. doi:10.2172/1415042.
Anderson, Iver, & Siemon, John. Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing. United States. doi:10.2172/1415042.
Anderson, Iver, and Siemon, John. Fri . "Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing". United States. doi:10.2172/1415042. https://www.osti.gov/servlets/purl/1415042.
@article{osti_1415042,
title = {Specific Adaptation of Gas Atomization Processing for Al-Based Alloy Powder for Additive Manufacturing},
author = {Anderson, Iver and Siemon, John},
abstractNote = {The charge for each gas atomization experiment was provided by Alcoa and consisted of cast blocks cut into 1 inch by 1 inch square rods of the chosen aluminum alloys. The atmosphere in the melting chamber and connected atomization system was evacuated with a mechanical pump prior to backfilling with ultrahigh purity (UHP grade) Ar. The melt was contained in a bottom tapped alumina crucible with an alumina stopper rod to seal the exit while heating to a pouring temperature of 1000 – 1400°C. When the desired superheat was reached, the stopper rod was lifted and melt flowed through pour tube and was atomized with Ar from a 45-22-052-409 gas atomization nozzle (or atomization die), having a jet apex angle of 45 degrees with 22 cylindrical gas jets (each with diameter of 1.32 mm or 0.052 inches) arrayed around the axis of a 10.4 mm central bore. The Ar atomization gas supply regulator pressure was set to produce nozzle manifold pressures for the series of runs at pressures of 250-650 psi. Secondary gas halos of Ar+O2 and He also were added to the interior of the spray chamber at various downstream locations for additional cooling of the atomized droplets, surface passivation, and to prevent coalescence of the resulting powder.},
doi = {10.2172/1415042},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jun 30 00:00:00 EDT 2017},
month = {Fri Jun 30 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • The initial three atomization attempts resulted in “freeze-outs” within the pour tubes in the pilot-scale system and yielded no powder. Re-evaluation of the alloy liquidus temperatures and melting characteristics, in collaboration with Alcoa, showed further superheat to be necessary to allow the liquid metal to flow through the pour tube to the atomization nozzle. A subsequent smaller run on the experimental atomization system verified these parameters and was successful, as were all successive runs on the larger pilot scale system. One alloy composition froze-out part way through the atomization on both pilot scale runs. SEM images showed needle formation andmore » phase segregations within the microstructure. Analysis of the pour tube freeze-out microstructures showed that large needles formed within the pour tube during the atomization experiment, which eventually blocked the melt stream. Alcoa verified the needle formation in this alloy using theoretical modeling of phase solidification. Sufficient powder of this composition was still generated to allow powder characterization and additive manufacturing trials at Alcoa.« less
  • The feasibility of a precision ceramic pouring tube has been demonstrated for efficient production of large quantities of fine spherical powders of pure Ti and Ti alloys by an advanced gas atomization method during initial trials of Ti alloy pouring and free-fall gas atomization. The experiments at University of Birmingham utilized a novel ceramic/metal composite tundish/pour tube and existing bottom pouring cold wall crucible induction melting capability, with pouring stream temperatures measured by a 2-color pyrometer. Minimal reaction/dissolution of both pour tubes was verified by microscopic and micro-analytical examination. The trials produced a chill cast ingot and spherical powder ofmore » Ti-6Al-4V (wt.%) and the composition and microstructure of both also were analyzed. Progress on close-coupled gas atomization studies at Iowa State University also will be reported.« less
  • ORNL partnered with GE Power & Water to investigate the effect of thermomagnetic processing on the microstructure and mechanical properties of GE Power & Water newly developed wrought Ni-Fe-Cr alloys. Exploration of the effects of high magnetic field process during heat treatment of the alloys indicated conditions where applications of magnetic fields yields significant property improvements. The alloy aged using high magnetic field processing exhibited 3 HRC higher hardness compared to the conventionally-aged alloy. The alloy annealed at 1785 F using high magnetic field processing demonstrated an average creep life 2.5 times longer than that of the conventionally heat-treated alloy.more » Preliminary results show that high magnetic field processing can improve the mechanical properties of Ni-Fe-Cr alloys and potentially extend the life cycle of the gas turbine components such as nozzles leading to significant energy savings.« less
  • A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.
  • This document serves as a final report to a small effort where several improvements were added to a LLNL code GEODYN-­L to develop Discrete Element Method (DEM) algorithms coupled to Lagrangian Finite Element (FE) solvers to investigate powder-­bed formation problems for additive manufacturing. The results from these simulations will be assessed for inclusion as the initial conditions for Direct Metal Laser Sintering (DMLS) simulations performed with ALE3D. The algorithms were written and performed on parallel computing platforms at LLNL. The total funding level was 3-­4 weeks of an FTE split amongst two staff scientists and one post-­doc. The DEM simulationsmore » emulated, as much as was feasible, the physical process of depositing a new layer of powder over a bed of existing powder. The DEM simulations utilized truncated size distributions spanning realistic size ranges with a size distribution profile consistent with realistic sample set. A minimum simulation sample size on the order of 40-­particles square by 10-­particles deep was utilized in these scoping studies in order to evaluate the potential effects of size segregation variation with distance displaced in front of a screed blade. A reasonable method for evaluating the problem was developed and validated. Several simulations were performed to show the viability of the approach. Future investigations will focus on running various simulations investigating powder particle sizing and screen geometries.« less