skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gamma-ray observations under bright moonlight with VERITAS

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1414790
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Astroparticle Physics
Additional Journal Information:
Journal Volume: 91; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-12-23 18:45:19; Journal ID: ISSN 0927-6505
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Archambault, S., Archer, A., Benbow, W., Bird, R., Bourbeau, E., Bouvier, A., Buchovecky, M., Bugaev, V., Cardenzana, J. V., Cerruti, M., Ciupik, L., Connolly, M. P., Cui, W., Daniel, M. K., Errando, M., Falcone, A., Feng, Q., Finley, J. P., Fleischhack, H., Fortson, L., Furniss, A., Gillanders, G. H., Griffin, S., Hanna, D., Hervet, O., Holder, J., Hughes, G., Humensky, T. B., Hütten, M., Johnson, C. A., Kaaret, P., Kar, P., Kertzman, M., Kieda, D., Krause, M., Lang, M. J., Lin, T. T. Y., Maier, G., McArthur, S., Moriarty, P., Mukherjee, R., Nieto, D., O’Brien, S., Ong, R. A., Otte, A. N., Park, N., Pohl, M., Popkow, A., Pueschel, E., Quinn, J., Ragan, K., Reynolds, P. T., Richards, G. T., Roache, E., Rulten, C., Sadeh, I., Sembroski, G. H., Shahinyan, K., Staszak, D., Telezhinsky, I., Trepanier, S., Wakely, S. P., Weinstein, A., Wilcox, P., Williams, D. A., and Zitzer, B.. Gamma-ray observations under bright moonlight with VERITAS. Netherlands: N. p., 2017. Web. doi:10.1016/j.astropartphys.2017.03.001.
Archambault, S., Archer, A., Benbow, W., Bird, R., Bourbeau, E., Bouvier, A., Buchovecky, M., Bugaev, V., Cardenzana, J. V., Cerruti, M., Ciupik, L., Connolly, M. P., Cui, W., Daniel, M. K., Errando, M., Falcone, A., Feng, Q., Finley, J. P., Fleischhack, H., Fortson, L., Furniss, A., Gillanders, G. H., Griffin, S., Hanna, D., Hervet, O., Holder, J., Hughes, G., Humensky, T. B., Hütten, M., Johnson, C. A., Kaaret, P., Kar, P., Kertzman, M., Kieda, D., Krause, M., Lang, M. J., Lin, T. T. Y., Maier, G., McArthur, S., Moriarty, P., Mukherjee, R., Nieto, D., O’Brien, S., Ong, R. A., Otte, A. N., Park, N., Pohl, M., Popkow, A., Pueschel, E., Quinn, J., Ragan, K., Reynolds, P. T., Richards, G. T., Roache, E., Rulten, C., Sadeh, I., Sembroski, G. H., Shahinyan, K., Staszak, D., Telezhinsky, I., Trepanier, S., Wakely, S. P., Weinstein, A., Wilcox, P., Williams, D. A., & Zitzer, B.. Gamma-ray observations under bright moonlight with VERITAS. Netherlands. doi:10.1016/j.astropartphys.2017.03.001.
Archambault, S., Archer, A., Benbow, W., Bird, R., Bourbeau, E., Bouvier, A., Buchovecky, M., Bugaev, V., Cardenzana, J. V., Cerruti, M., Ciupik, L., Connolly, M. P., Cui, W., Daniel, M. K., Errando, M., Falcone, A., Feng, Q., Finley, J. P., Fleischhack, H., Fortson, L., Furniss, A., Gillanders, G. H., Griffin, S., Hanna, D., Hervet, O., Holder, J., Hughes, G., Humensky, T. B., Hütten, M., Johnson, C. A., Kaaret, P., Kar, P., Kertzman, M., Kieda, D., Krause, M., Lang, M. J., Lin, T. T. Y., Maier, G., McArthur, S., Moriarty, P., Mukherjee, R., Nieto, D., O’Brien, S., Ong, R. A., Otte, A. N., Park, N., Pohl, M., Popkow, A., Pueschel, E., Quinn, J., Ragan, K., Reynolds, P. T., Richards, G. T., Roache, E., Rulten, C., Sadeh, I., Sembroski, G. H., Shahinyan, K., Staszak, D., Telezhinsky, I., Trepanier, S., Wakely, S. P., Weinstein, A., Wilcox, P., Williams, D. A., and Zitzer, B.. Mon . "Gamma-ray observations under bright moonlight with VERITAS". Netherlands. doi:10.1016/j.astropartphys.2017.03.001.
@article{osti_1414790,
title = {Gamma-ray observations under bright moonlight with VERITAS},
author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Bourbeau, E. and Bouvier, A. and Buchovecky, M. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Ciupik, L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hütten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and O’Brien, S. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, M. and Popkow, A. and Pueschel, E. and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, I. and Trepanier, S. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Williams, D. A. and Zitzer, B.},
abstractNote = {},
doi = {10.1016/j.astropartphys.2017.03.001},
journal = {Astroparticle Physics},
number = C,
volume = 91,
place = {Netherlands},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.astropartphys.2017.03.001

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • Gamma-ray Burst (GRB) observations at Very High Energies (VHE, E > 100 GeV) can impose tight constraints on some GRB emission models. Many GRB after-glow models predict a VHE component similar to that seen in blazars and supernova remnants, in which the GRB spectral energy distribution has a double-peaked shape extending into the VHE regime. Consistent with this afterglow scenario, EGRET detected delayed high energy emission from all five bright BATSE GRBs that occurred within its field of view. GRB observations have had high priority in the observing program at the Whipple 10m Telescope and will continue to be highmore » priority targets when the next generation observatory VERITAS comes online. Upper limits on the VHE emission from ten GRBs observed with the Whipple Telescope are reported here.« less
  • The search for very high-energy (VHE) gamma-ray emission from gamma-ray bursts (GRBs) seeks to understand the highest energy particles accelerated in the bursts. So far, there has been no definitive observation of VHE emission associated with any GRB. The new generation of imaging atmospheric Cherenkov telescopes is probing GRB emission in the 100-1000 GeV regime as never before possible. We describe the GRB observing program at VERITAS and report on the initial results from GRBs observed with VERITAS. For several bursts, data have been collected starting within the first 2 to 4 minutes after the beginning of the GRB.
  • We present the results of 16 Swift-triggered Gamma-ray burst (GRB) follow-up observations taken with the Very Energetic Radiation Imaging Telescope Array System (VERITAS) telescope array from 2007 January to 2009 June. The median energy threshold and response time of these observations were 260 GeV and 320 s, respectively. Observations had an average duration of 90 minutes. Each burst is analyzed independently in two modes: over the whole duration of the observations and again over a shorter timescale determined by the maximum VERITAS sensitivity to a burst with a t{sup -1.5} time profile. This temporal model is characteristic of GRB afterglowsmore » with high-energy, long-lived emission that have been detected by the Large Area Telescope on board the Fermi satellite. No significant very high energy (VHE) gamma-ray emission was detected and upper limits above the VERITAS threshold energy are calculated. The VERITAS upper limits are corrected for gamma-ray extinction by the extragalactic background light and interpreted in the context of the keV emission detected by Swift. For some bursts the VHE emission must have less power than the keV emission, placing constraints on inverse Compton models of VHE emission.« less
  • Observations of radio halos and relics in galaxy clusters indicate efficient electron acceleration. Protons should likewise be accelerated and, on account of weak energy losses, can accumulate, suggesting that clusters may also be sources of very high energy (VHE; E > 100 GeV) gamma-ray emission. We report here on VHE gamma-ray observations of the Coma galaxy cluster with the VERITAS array of imaging Cerenkov telescopes, with complementing Fermi Large Area Telescope observations at GeV energies. No significant gamma-ray emission from the Coma Cluster was detected. Integral flux upper limits at the 99% confidence level were measured to be on themore » order of (2-5) Multiplication-Sign 10{sup -8} photons m {sup -2} s {sup -1} (VERITAS, >220 GeV) and {approx}2 Multiplication-Sign 10{sup -6} photons m {sup -2} s {sup -1} (Fermi, 1-3 GeV), respectively. We use the gamma-ray upper limits to constrain cosmic rays (CRs) and magnetic fields in Coma. Using an analytical approach, the CR-to-thermal pressure ratio is constrained to be <16% from VERITAS data and <1.7% from Fermi data (averaged within the virial radius). These upper limits are starting to constrain the CR physics in self-consistent cosmological cluster simulations and cap the maximum CR acceleration efficiency at structure formation shocks to be <50%. Alternatively, this may argue for non-negligible CR transport processes such as CR streaming and diffusion into the outer cluster regions. Assuming that the radio-emitting electrons of the Coma halo result from hadronic CR interactions, the observations imply a lower limit on the central magnetic field in Coma of {approx}(2-5.5) {mu}G, depending on the radial magnetic field profile and on the gamma-ray spectral index. Since these values are below those inferred by Faraday rotation measurements in Coma (for most of the parameter space), this renders the hadronic model a very plausible explanation of the Coma radio halo. Finally, since galaxy clusters are dark matter (DM) dominated, the VERITAS upper limits have been used to place constraints on the thermally averaged product of the total self-annihilation cross section and the relative velocity of the DM particles, ({sigma}v).« less
  • TeV J2032+4130 was the first unidentified source discovered at very high energies (VHEs; E > 100 GeV), with no obvious counterpart in any other wavelength. It is also the first extended source to be observed in VHE gamma rays. Following its discovery, intensive observational campaigns have been carried out in all wavelengths in order to understand the nature of the object, which have met with limited success. We report here on a deep observation of TeV J2032+4130 based on 48.2 hr of data taken from 2009 to 2012 by the Very Energetic Radiation Imaging Telescope Array System experiment. The sourcemore » is detected at 8.7 standard deviations (σ) and is found to be extended and asymmetric with a width of 9.'5 ± 1.'2 along the major axis and 4.'0 ± 0.'5 along the minor axis. The spectrum is well described by a differential power law with an index of 2.10 ± 0.14{sub stat} ± 0.21{sub sys} and a normalization of (9.5 ± 1.6{sub stat} ± 2.2{sub sys}) × 10{sup –13} TeV{sup –1} cm{sup –2} s{sup –1} at 1 TeV. We interpret these results in the context of multiwavelength scenarios which particularly favor the pulsar wind nebula interpretation.« less