skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Field enhancement of electronic conductance at ferroelectric domain walls

Abstract

Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO 3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of the atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science, Inst. for Functional Imaging of Materials
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science, Inst. for Functional Imaging of Materials; Xi'an Jiaotong Univ. (China). Multi-disciplinary Materials Research Center, Frontier Inst. of Science and Technology
  3. National Cheng Kung Univ., Tainan City (Taiwan). Dept. of Physics
  4. National Chiao Tung Univ., Hsinchu (Taiwan). Dept. of Materials Science and Engineering; Academia Sinica, Taipei (Taiwan). Inst. of Physics
  5. Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1414693
Grant/Contract Number:  
AC05-00OR22725; FG02-07ER46417
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ferroelectrics and multiferroics; nanoscale materials

Citation Formats

Vasudevan, Rama K., Cao, Ye, Laanait, Nouamane, Ievlev, Anton, Li, Linglong, Yang, Jan-Chi, Chu, Ying-Hao, Chen, Long-Qing, Kalinin, Sergei V., and Maksymovych, Petro. Field enhancement of electronic conductance at ferroelectric domain walls. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01334-5.
Vasudevan, Rama K., Cao, Ye, Laanait, Nouamane, Ievlev, Anton, Li, Linglong, Yang, Jan-Chi, Chu, Ying-Hao, Chen, Long-Qing, Kalinin, Sergei V., & Maksymovych, Petro. Field enhancement of electronic conductance at ferroelectric domain walls. United States. doi:10.1038/s41467-017-01334-5.
Vasudevan, Rama K., Cao, Ye, Laanait, Nouamane, Ievlev, Anton, Li, Linglong, Yang, Jan-Chi, Chu, Ying-Hao, Chen, Long-Qing, Kalinin, Sergei V., and Maksymovych, Petro. Mon . "Field enhancement of electronic conductance at ferroelectric domain walls". United States. doi:10.1038/s41467-017-01334-5. https://www.osti.gov/servlets/purl/1414693.
@article{osti_1414693,
title = {Field enhancement of electronic conductance at ferroelectric domain walls},
author = {Vasudevan, Rama K. and Cao, Ye and Laanait, Nouamane and Ievlev, Anton and Li, Linglong and Yang, Jan-Chi and Chu, Ying-Hao and Chen, Long-Qing and Kalinin, Sergei V. and Maksymovych, Petro},
abstractNote = {Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of the atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.},
doi = {10.1038/s41467-017-01334-5},
journal = {Nature Communications},
issn = {2041-1723},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 6 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Estimating the Dimension of a Model
journal, March 1978


Nanoscale Domain Control in Multiferroic BiFeO3 Thin Films
journal, September 2006

  • Chu, Y.-H.; Zhan, Q.; Martin, L. W.
  • Advanced Materials, Vol. 18, Issue 17, p. 2307-2311
  • DOI: 10.1002/adma.200601098

The topological theory of defects in ordered media
journal, July 1979


Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization
journal, May 2005

  • Iakovlev, S.; Solterbeck, C. -H.; Kuhnke, M.
  • Journal of Applied Physics, Vol. 97, Issue 9
  • DOI: 10.1063/1.1881776

Mesoscale flux-closure domain formation in single-crystal BaTiO3
journal, July 2011

  • McQuaid, R. G. P.; McGilly, L. J.; Sharma, P.
  • Nature Communications, Vol. 2, Article No. 404
  • DOI: 10.1038/ncomms1413

Electrical Control of Multiferroic Orderings in Mixed-Phase BiFeO3 Films
journal, May 2012


Nanoscale Origins of Nonlinear Behavior in Ferroic Thin Films
journal, August 2012

  • Vasudevan, Rama K.; Okatan, M. Baris; Duan, Chen
  • Advanced Functional Materials, Vol. 23, Issue 1
  • DOI: 10.1002/adfm.201201025

Persistent conductive footprints of 109° domain walls in bismuth ferrite films
journal, March 2014

  • Stolichnov, I.; Iwanowska, M.; Colla, E.
  • Applied Physics Letters, Vol. 104, Issue 13
  • DOI: 10.1063/1.4869851

Conduction at domain walls in oxide multiferroics
journal, January 2009

  • Seidel, J.; Martin, L. W.; He, Q.
  • Nature Materials, Vol. 8, Issue 3
  • DOI: 10.1038/nmat2373

Anisotropic conductance at improper ferroelectric domain walls
journal, February 2012

  • Meier, D.; Seidel, J.; Cano, A.
  • Nature Materials, Vol. 11, Issue 4
  • DOI: 10.1038/nmat3249

Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls
journal, September 2011


Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films
journal, September 2011

  • Guyonnet, Jill; Gaponenko, Iaroslav; Gariglio, Stefano
  • Advanced Materials, Vol. 23, Issue 45
  • DOI: 10.1002/adma.201102254

Domain wall conduction in multiaxial ferroelectrics
journal, January 2012

  • Eliseev, Eugene A.; Morozovska, Anna N.; Svechnikov, George S.
  • Physical Review B, Vol. 85, Issue 4
  • DOI: 10.1103/PhysRevB.85.045312

Bundles of polytwins as meta-elastic domains in the thin polycrystalline simple multi-ferroic system PZT
journal, January 2010


Domain Wall Conduction and Polarization-Mediated Transport in Ferroelectrics
journal, April 2013

  • Vasudevan, Rama K.; Wu, Weida; Guest, Jeffrey R.
  • Advanced Functional Materials, Vol. 23, Issue 20
  • DOI: 10.1002/adfm.201300085

Electronic Properties of Isosymmetric Phase Boundaries in Highly Strained Ca-Doped BiFeO 3
journal, April 2014


Observation of a periodic array of flux-closure quadrants in strained ferroelectric PbTiO3 films
journal, April 2015


Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review
journal, June 2008


Exploring Topological Defects in Epitaxial BiFeO 3 Thin Films
journal, January 2011

  • Vasudevan, Rama K.; Chen, Yi-Chun; Tai, Hsiang-Hua
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn102099z

Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients
journal, August 2015

  • Chu, Kanghyun; Jang, Byung-Kweon; Sung, Ji Ho
  • Nature Nanotechnology, Vol. 10, Issue 11
  • DOI: 10.1038/nnano.2015.191

Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3
journal, November 2011

  • Balke, Nina; Winchester, Benjamin; Ren, Wei
  • Nature Physics, Vol. 8, Issue 1
  • DOI: 10.1038/nphys2132

Nucleation, growth, and control of ferroelectric-ferroelastic domains in thin polycrystalline films
journal, November 2012


Atomic-Scale Evolution of Local Electronic Structure Across Multiferroic Domain Walls
journal, February 2011

  • Chiu, Ya-Ping; Chen, Yu-Ting; Huang, Bo-Chao
  • Advanced Materials, Vol. 23, Issue 13
  • DOI: 10.1002/adma.201004143

Tunable Metallic Conductance in Ferroelectric Nanodomains
journal, December 2011

  • Maksymovych, Peter; Morozovska, Anna N.; Yu, Pu
  • Nano Letters, Vol. 12, Issue 1
  • DOI: 10.1021/nl203349b

Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3
journal, March 2011


Spontaneous Vortex Nanodomain Arrays at Ferroelectric Heterointerfaces
journal, February 2011

  • Nelson, Christopher T.; Winchester, Benjamin; Zhang, Yi
  • Nano Letters, Vol. 11, Issue 2
  • DOI: 10.1021/nl1041808

Conducting Domain Walls in Lithium Niobate Single Crystals
journal, May 2012

  • Schröder, Mathias; Haußmann, Alexander; Thiessen, Andreas
  • Advanced Functional Materials, Vol. 22, Issue 18
  • DOI: 10.1002/adfm.201201174

Flux Closure Vortexlike Domain Structures in Ferroelectric Thin Films
journal, May 2010


Towards reversible control of domain wall conduction in Pb(Zr 0.2 Ti 0.8 )O 3 thin films
journal, April 2015

  • Gaponenko, I.; Tückmantel, P.; Karthik, J.
  • Applied Physics Letters, Vol. 106, Issue 16
  • DOI: 10.1063/1.4918762

Observation of polar vortices in oxide superlattices
journal, January 2016

  • Yadav, A. K.; Nelson, C. T.; Hsu, S. L.
  • Nature, Vol. 530, Issue 7589
  • DOI: 10.1038/nature16463

Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films
journal, June 2015

  • Crassous, Arnaud; Sluka, Tomas; Tagantsev, Alexander K.
  • Nature Nanotechnology, Vol. 10, Issue 7
  • DOI: 10.1038/nnano.2015.114

Enhanced electromechanical response of ferroelectrics due to charged domain walls
journal, January 2012

  • Sluka, Tomas; Tagantsev, Alexander K.; Damjanovic, Dragan
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1751

Conduction through 71° Domain Walls in BiFeO 3 Thin Films
journal, September 2011


Labile Ferroelastic Nanodomains in Bilayered Ferroelectric Thin Films
journal, September 2009

  • Anbusathaiah, Varatharajan; Kan, Daisuke; Kartawidjaja, Fransiska C.
  • Advanced Materials, Vol. 21, Issue 34
  • DOI: 10.1002/adma.200803701

The influence of the top-contact metal on the ferroelectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films
journal, December 2008

  • Pintilie, Lucian; Vrejoiu, Ionela; Hesse, Dietrich
  • Journal of Applied Physics, Vol. 104, Issue 11
  • DOI: 10.1063/1.3021293

Ionized oxygen vacancy-related electrical conductivity in (Pb 1− x La x )(Zr 0.90 Ti 0.10 ) 1− x /4 O 3 ceramics
journal, October 2008

  • Peláiz-Barranco, A.; Guerra, J. D. S.; López-Noda, R.
  • Journal of Physics D: Applied Physics, Vol. 41, Issue 21
  • DOI: 10.1088/0022-3727/41/21/215503

Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects
journal, November 2016

  • Rojac, Tadej; Bencan, Andreja; Drazic, Goran
  • Nature Materials, Vol. 16, Issue 3
  • DOI: 10.1038/nmat4799

Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO 3
journal, May 2011

  • Maksymovych, Peter; Seidel, Jan; Chu, Ying Hao
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl104363x

A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface
journal, January 2004


Free-electron gas at charged domain walls in insulating BaTiO3
journal, May 2013

  • Sluka, Tomas; Tagantsev, Alexander K.; Bednyakov, Petr
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2839

Correlated polarization switching in the proximity of a 180 ° domain wall
journal, July 2010

  • Aravind, Vasudeva Rao; Morozovska, A. N.; Bhattacharyya, Saswata
  • Physical Review B, Vol. 82, Issue 2
  • DOI: 10.1103/PhysRevB.82.024111

Local conductivity and the role of vacancies around twin walls of (001)−BiFeO 3 thin films
journal, September 2012

  • Farokhipoor, S.; Noheda, B.
  • Journal of Applied Physics, Vol. 112, Issue 5
  • DOI: 10.1063/1.4746073

Local polarization dynamics in ferroelectric materials
journal, April 2010

  • Kalinin, Sergei V.; Morozovska, Anna N.; Chen, Long Qing
  • Reports on Progress in Physics, Vol. 73, Issue 5, Article No. 056502
  • DOI: 10.1088/0034-4885/73/5/056502

Spatially Inhomogeneous Metal-Insulator Transition in Doped Manganites
journal, September 1999


Domain Bundle Boundaries in Single Crystal BaTiO 3 Lamellae: Searching for Naturally Forming Dipole Flux-Closure/Quadrupole Chains
journal, October 2010

  • McGilly, L. J.; Schilling, A.; Gregg, J. M.
  • Nano Letters, Vol. 10, Issue 10
  • DOI: 10.1021/nl102566y

Deterministic control of ferroelastic switching in multiferroic materials
journal, October 2009

  • Balke, N.; Choudhury, S.; Jesse, S.
  • Nature Nanotechnology, Vol. 4, Issue 12, p. 868-875
  • DOI: 10.1038/nnano.2009.293

Microwave a.c. conductivity of domain walls in ferroelectric thin films
journal, May 2016

  • Tselev, Alexander; Yu, Pu; Cao, Ye
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11630

Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface
journal, September 2011

  • Bert, Julie A.; Kalisky, Beena; Bell, Christopher
  • Nature Physics, Vol. 7, Issue 10, p. 767-771
  • DOI: 10.1038/nphys2079

Band gap and Schottky barrier heights of multiferroic BiFeO3
journal, March 2007

  • Clark, S. J.; Robertson, J.
  • Applied Physics Letters, Vol. 90, Issue 13
  • DOI: 10.1063/1.2716868

    Works referencing / citing this record:

    Intrinsic Conductance of Domain Walls in BiFeO 3
    journal, June 2019


    Intrinsic Conductance of Domain Walls in BiFeO 3
    journal, June 2019