skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Field enhancement of electronic conductance at ferroelectric domain walls

Abstract

Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of the atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science, Inst. for Functional Imaging of Materials
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Science, Inst. for Functional Imaging of Materials; Xi'an Jiaotong Univ. (China). Multi-disciplinary Materials Research Center, Frontier Inst. of Science and Technology
  3. National Cheng Kung Univ., Tainan City (Taiwan). Dept. of Physics
  4. National Chiao Tung Univ., Hsinchu (Taiwan). Dept. of Materials Science and Engineering; Academia Sinica, Taipei (Taiwan). Inst. of Physics
  5. Pennsylvania State Univ., University Park, PA (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1414693
Grant/Contract Number:  
AC05-00OR22725; FG02-07ER46417
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; ferroelectrics and multiferroics; nanoscale materials

Citation Formats

Vasudevan, Rama K., Cao, Ye, Laanait, Nouamane, Ievlev, Anton, Li, Linglong, Yang, Jan-Chi, Chu, Ying-Hao, Chen, Long-Qing, Kalinin, Sergei V., and Maksymovych, Petro. Field enhancement of electronic conductance at ferroelectric domain walls. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01334-5.
Vasudevan, Rama K., Cao, Ye, Laanait, Nouamane, Ievlev, Anton, Li, Linglong, Yang, Jan-Chi, Chu, Ying-Hao, Chen, Long-Qing, Kalinin, Sergei V., & Maksymovych, Petro. Field enhancement of electronic conductance at ferroelectric domain walls. United States. https://doi.org/10.1038/s41467-017-01334-5
Vasudevan, Rama K., Cao, Ye, Laanait, Nouamane, Ievlev, Anton, Li, Linglong, Yang, Jan-Chi, Chu, Ying-Hao, Chen, Long-Qing, Kalinin, Sergei V., and Maksymovych, Petro. 2017. "Field enhancement of electronic conductance at ferroelectric domain walls". United States. https://doi.org/10.1038/s41467-017-01334-5. https://www.osti.gov/servlets/purl/1414693.
@article{osti_1414693,
title = {Field enhancement of electronic conductance at ferroelectric domain walls},
author = {Vasudevan, Rama K. and Cao, Ye and Laanait, Nouamane and Ievlev, Anton and Li, Linglong and Yang, Jan-Chi and Chu, Ying-Hao and Chen, Long-Qing and Kalinin, Sergei V. and Maksymovych, Petro},
abstractNote = {Ferroelectric domain walls have continued to attract widespread attention due to both the novelty of the phenomena observed and the ability to reliably pattern them in nanoscale dimensions. But, the conductivity mechanisms remain in debate, particularly around nominally uncharged walls. Here, we posit a conduction mechanism relying on field-modification effect from polarization re-orientation and the structure of the reverse-domain nucleus. Through conductive atomic force microscopy measurements on an ultra-thin (001) BiFeO3 thin film, in combination with phase-field simulations, we show that the field-induced twisted domain nucleus formed at domain walls results in local-field enhancement around the region of the atomic force microscope tip. In conjunction with slight barrier lowering, these two effects are sufficient to explain the observed emission current distribution. Our results suggest that different electronic properties at domain walls are not necessary to observe localized enhancement in domain wall currents.},
doi = {10.1038/s41467-017-01334-5},
url = {https://www.osti.gov/biblio/1414693}, journal = {Nature Communications},
issn = {2041-1723},
number = 1,
volume = 8,
place = {United States},
year = {Mon Nov 06 00:00:00 EST 2017},
month = {Mon Nov 06 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 25 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Estimating the Dimension of a Model
journal, March 1978


Nanoscale Domain Control in Multiferroic BiFeO3 Thin Films
journal, September 2006


Multiferroic BiFeO3 thin films processed via chemical solution deposition: Structural and electrical characterization
journal, May 2005


Mesoscale flux-closure domain formation in single-crystal BaTiO3
journal, July 2011


Electrical Control of Multiferroic Orderings in Mixed-Phase BiFeO3 Films
journal, May 2012


Nanoscale Origins of Nonlinear Behavior in Ferroic Thin Films
journal, August 2012


Persistent conductive footprints of 109° domain walls in bismuth ferrite films
journal, March 2014


Conduction at domain walls in oxide multiferroics
journal, January 2009


Full-field X-ray reflection microscopy of epitaxial thin-films
journal, October 2014


Anisotropic conductance at improper ferroelectric domain walls
journal, February 2012


Anisotropic conductance at improper ferroelectric domain walls
journal, February 2012


Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls
journal, September 2011


Local conductivity and the role of vacancies around twin walls of (001)−BiFeO 3 thin films
journal, September 2012


Domain wall conduction in multiaxial ferroelectrics
text, January 2011


Conduction at Domain Walls in Insulating Pb(Zr0.2Ti0.8)O3 Thin Films
journal, September 2011


Domain wall conduction in multiaxial ferroelectrics
journal, January 2012


Domain Wall Conduction and Polarization-Mediated Transport in Ferroelectrics
journal, April 2013


Electronic Properties of Isosymmetric Phase Boundaries in Highly Strained Ca-Doped BiFeO 3
journal, April 2014


Phase-Field Method of Phase Transitions/Domain Structures in Ferroelectric Thin Films: A Review
journal, June 2008


Exploring Topological Defects in Epitaxial BiFeO 3 Thin Films
journal, January 2011


Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients
journal, August 2015


Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3
journal, November 2011


Nucleation, growth, and control of ferroelectric-ferroelastic domains in thin polycrystalline films
journal, November 2012


Atomic-Scale Evolution of Local Electronic Structure Across Multiferroic Domain Walls
journal, February 2011


Tunable Metallic Conductance in Ferroelectric Nanodomains
journal, December 2011


Spontaneous Vortex Nanodomain Arrays at Ferroelectric Heterointerfaces
journal, February 2011


Conducting Domain Walls in Lithium Niobate Single Crystals
journal, May 2012


Towards reversible control of domain wall conduction in Pb(Zr 0.2 Ti 0.8 )O 3 thin films
journal, April 2015


Observation of polar vortices in oxide superlattices
journal, January 2016


Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films
journal, June 2015


Enhanced electromechanical response of ferroelectrics due to charged domain walls
journal, January 2012


Conduction through 71° Domain Walls in BiFeO 3 Thin Films
journal, September 2011


Labile Ferroelastic Nanodomains in Bilayered Ferroelectric Thin Films
journal, September 2009


The influence of the top-contact metal on the ferroelectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films
journal, December 2008


Ionized oxygen vacancy-related electrical conductivity in (Pb 1− x La x )(Zr 0.90 Ti 0.10 ) 1− x /4 O 3 ceramics
journal, October 2008


Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects
journal, November 2016


Tunable Metallic Conductance in Ferroelectric Nanodomains
journal, December 2011


Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO 3
journal, May 2011


A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface
journal, January 2004


Free-electron gas at charged domain walls in insulating BaTiO3
journal, May 2013


Friendship stability in adolescence is associated with ventral striatum responses to vicarious rewards
journal, January 2021


Correlated polarization switching in the proximity of a 180 ° domain wall
journal, July 2010


Local conductivity and the role of vacancies around twin walls of (001)−BiFeO 3 thin films
journal, September 2012


Local polarization dynamics in ferroelectric materials
journal, April 2010


Deterministic control of ferroelastic switching in multiferroic materials
journal, October 2009


Microwave a.c. conductivity of domain walls in ferroelectric thin films
journal, May 2016


Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface
journal, September 2011


Flux Closure Vortexlike Domain Structures in Ferroelectric Thin Films
journal, May 2010


Band gap and Schottky barrier heights of multiferroic BiFeO3
journal, March 2007


Conduction of Topologically Protected Charged Ferroelectric Domain Walls
journal, February 2012


Electric control of straight stripe conductive mixed-phase nanostructures in La-doped BiFeO3
journal, January 2014


Electrical conduction in nanodomains in congruent lithium tantalate single crystal
journal, January 2014


Domain Wall Conductivity in La-Doped BiFeO 3
journal, November 2010


Ferroelectric polarization-leakage current relation in high quality epitaxial Pb ( Zr , Ti ) O 3 films
journal, March 2007


Intrinsic space charge layers and field enhancement in ferroelectric nanojunctions
journal, July 2015


Nanoscale polarization switching mechanisms in multiferroic BiFeO 3 thin films
journal, March 2011


Non-volatile domain nucleation and growth in multiferroic BiFeO 3 films
journal, May 2011


Direct Observation of Pinning and Bowing of a Single Ferroelectric Domain Wall
journal, May 1999


Topologically protected surface states in a centrosymmetric superconductor β-PdBi2
journal, October 2015


Works referencing / citing this record:

Characterization of domain distributions by second harmonic generation in ferroelectrics
journal, July 2018


Physics and applications of charged domain walls
journal, November 2018


Intrinsic Conductance of Domain Walls in BiFeO 3
journal, June 2019


Segregation Induced Self-Assembly of Highly Active Perovskite for Rapid Oxygen Reduction Reaction
journal, September 2018


Manipulation of Conductive Domain Walls in Confined Ferroelectric Nanoislands
journal, May 2019


Dielectric relaxation and local domain structures of ferroelectric PIMNT and PMNT single crystals
journal, October 2019