skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas

Abstract

This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.

Authors:
 [1]
  1. Univ. of California, Irvine, CA (United States)
Publication Date:
Research Org.:
Univ. of California, Irvine, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES) (SC-24)
OSTI Identifier:
1414294
Report Number(s):
DOE-UCI-10417
DOE Contract Number:  
SC0010417
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Alfven instabilities; energetic particles; tokamak

Citation Formats

Chen, Liu. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas. United States: N. p., 2017. Web. doi:10.2172/1414294.
Chen, Liu. Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas. United States. doi:10.2172/1414294.
Chen, Liu. Wed . "Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas". United States. doi:10.2172/1414294. https://www.osti.gov/servlets/purl/1414294.
@article{osti_1414294,
title = {Theoretical Studies of Alfven Waves and Energetic Particle Physics in Fusion Plasmas},
author = {Chen, Liu},
abstractNote = {This report summarizes major theoretical findings in the linear as well as nonlinear physics of Alfvén waves and energetic particles in magnetically confined fusion plasmas. On the linear physics, a variational formulation, based on the separation of singular and regular spatial scales, for drift-Alfvén instabilities excited by energetic particles is established. This variational formulation is then applied to derive the general fishbone-like dispersion relations corresponding to the various Alfvén eigenmodes and energetic-particle modes. It is further employed to explore in depth the low-frequency Alfvén eigenmodes and demonstrate the non-perturbative nature of the energetic particles. On the nonlinear physics, new novel findings are obtained on both the nonlinear wave-wave interactions and nonlinear wave-energetic particle interactions. It is demonstrated that both the energetic particles and the fine radial mode structures could qualitatively affect the nonlinear evolution of Alfvén eigenmodes. Meanwhile, a theoretical approach based on the Dyson equation is developed to treat self-consistently the nonlinear interactions between Alfvén waves and energetic particles, and is then applied to explain simulation results of energetic-particle modes. Relevant list of journal publications on the above findings is also included.},
doi = {10.2172/1414294},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2017},
month = {12}
}