skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic torque anomaly in the quantum limit of Weyl semimetals

Abstract

Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.

Authors:
 [1];  [2];  [2];  [3];  [4];  [5]; ORCiD logo [5];  [6]; ORCiD logo [6];  [2];  [6];  [2]
  1. Univ. of California, Berkeley, CA (United States); Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany)
  2. Univ. of California, Berkeley, CA (United States)
  3. National High Magnetic Field Laboratory, Los Alamos, NM (United States)
  4. Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); National High Magnetic Field Laboratory, Los Alamos, NM (United States)
  5. National High Magnetic Field Laboratory, Tallahassee, FL (United States)
  6. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1414110
Report Number(s):
LA-UR-17-22971
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
AC52-06NA25396; SC0002613
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 36 MATERIALS SCIENCE; Material Science; Torque; Weyl semimetal; quantum limit

Citation Formats

Moll, Philip J. W., Potter, Andrew C., Nair, Nityan L., Ramshaw, B. J., Modic, K. A., Riggs, Scott, Zeng, Bin, Ghimire, Nirmal J., Bauer, Eric D., Kealhofer, Robert, Ronning, Filip, and Analytis, James G. Magnetic torque anomaly in the quantum limit of Weyl semimetals. United States: N. p., 2016. Web. doi:10.1038/ncomms12492.
Moll, Philip J. W., Potter, Andrew C., Nair, Nityan L., Ramshaw, B. J., Modic, K. A., Riggs, Scott, Zeng, Bin, Ghimire, Nirmal J., Bauer, Eric D., Kealhofer, Robert, Ronning, Filip, & Analytis, James G. Magnetic torque anomaly in the quantum limit of Weyl semimetals. United States. doi:10.1038/ncomms12492.
Moll, Philip J. W., Potter, Andrew C., Nair, Nityan L., Ramshaw, B. J., Modic, K. A., Riggs, Scott, Zeng, Bin, Ghimire, Nirmal J., Bauer, Eric D., Kealhofer, Robert, Ronning, Filip, and Analytis, James G. Mon . "Magnetic torque anomaly in the quantum limit of Weyl semimetals". United States. doi:10.1038/ncomms12492. https://www.osti.gov/servlets/purl/1414110.
@article{osti_1414110,
title = {Magnetic torque anomaly in the quantum limit of Weyl semimetals},
author = {Moll, Philip J. W. and Potter, Andrew C. and Nair, Nityan L. and Ramshaw, B. J. and Modic, K. A. and Riggs, Scott and Zeng, Bin and Ghimire, Nirmal J. and Bauer, Eric D. and Kealhofer, Robert and Ronning, Filip and Analytis, James G.},
abstractNote = {Electrons in materials with linear dispersion behave as massless Weyl- or Dirac-quasiparticles, and continue to intrigue due to their close resemblance to elusive ultra-relativistic particles as well as their potential for future electronics. Yet the experimental signatures of Weyl-fermions are often subtle and indirect, in particular if they coexist with conventional, massive quasiparticles. Here we show a pronounced anomaly in the magnetic torque of the Weyl semimetal NbAs upon entering the quantum limit state in high magnetic fields. The torque changes sign in the quantum limit, signalling a reversal of the magnetic anisotropy that can be directly attributed to the topological nature of the Weyl electrons. Our results establish that anomalous quantum limit torque measurements provide a direct experimental method to identify and distinguish Weyl and Dirac systems.},
doi = {10.1038/ncomms12492},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 7,
place = {United States},
year = {2016},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Dirac materials
journal, January 2014


Anomalous orbital magnetism in Dirac-electron systems: Role of pseudospin paramagnetism
journal, May 2010


Three-dimensional Dirac semimetal and quantum transport in Cd 3 As 2
journal, September 2013


Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi
journal, January 2014


Graphene: Status and Prospects
journal, June 2009


Berry Phase and de Haas–van Alphen Effect in L a R h I n 5
journal, September 2004


Magnetotransport of single crystalline NbAs
journal, March 2015


Berry’s phase for energy bands in solids
journal, June 1989


Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs
journal, November 2015


Quantal Phase Factors Accompanying Adiabatic Changes
journal, March 1984

  • Berry, M. V.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 392, Issue 1802
  • DOI: 10.1098/rspa.1984.0023

Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP
journal, June 2015

  • Shekhar, Chandra; Nayak, Ajaya K.; Sun, Yan
  • Nature Physics, Vol. 11, Issue 8
  • DOI: 10.1038/nphys3372

Dirac semimetal and topological phase transitions in A 3 Bi ( A = Na , K, Rb)
journal, May 2012


An insulator with a twist
journal, May 2008


The phase of the de Haas–van Alphen oscillations, the Berry phase, and band-contact lines in metals
journal, May 2007

  • Mikitik, G. P.; Sharlai, Yu. V.
  • Low Temperature Physics, Vol. 33, Issue 5
  • DOI: 10.1063/1.2737555

Topological response in Weyl semimetals and the chiral anomaly
journal, September 2012


Magnetization in the Ultraquantum Limit
journal, June 2002


A roadmap for graphene
journal, October 2012

  • Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.
  • Nature, Vol. 490, Issue 7419
  • DOI: 10.1038/nature11458

Dirac Fermions in Solids: From High-T c Cuprates and Graphene to Topological Insulators and Weyl Semimetals
journal, March 2014


Experimental Realization of a Three-Dimensional Dirac Semimetal
journal, July 2014


Recent developments in transport phenomena in Weyl semimetals
journal, November 2013


On the Arsenides and Antimonides of Niobium.
journal, January 1964


A stable three-dimensional topological Dirac semimetal Cd3As2
journal, May 2014

  • Liu, Z. K.; Jiang, J.; Zhou, B.
  • Nature Materials, Vol. 13, Issue 7
  • DOI: 10.1038/nmat3990

The de Haas-van Alphen effect in n-InSb and n-InAs
journal, December 1974


Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP
journal, May 2016

  • Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11615

A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class
journal, June 2015

  • Huang, Shin-Ming; Xu, Su-Yang; Belopolski, Ilya
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8373