skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer

Abstract

Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO 117-PPO 47-PE O117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Triton X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 –more » 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.« less

Authors:
 [1];  [1];  [2]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of California, Davis, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1414103
Report Number(s):
LA-UR-17-21430
Journal ID: ISSN 1525-7797
Grant/Contract Number:
AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Biomacromolecules
Additional Journal Information:
Journal Volume: 18; Journal Issue: 4; Journal ID: ISSN 1525-7797
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Material Science

Citation Formats

Hayden, Steven C., Junghans, Ann, Majewski, Jaroslaw, and Firestone, Millicent A. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer. United States: N. p., 2017. Web. doi:10.1021/acs.biomac.6b01461.
Hayden, Steven C., Junghans, Ann, Majewski, Jaroslaw, & Firestone, Millicent A. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer. United States. doi:10.1021/acs.biomac.6b01461.
Hayden, Steven C., Junghans, Ann, Majewski, Jaroslaw, and Firestone, Millicent A. Wed . "Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer". United States. doi:10.1021/acs.biomac.6b01461. https://www.osti.gov/servlets/purl/1414103.
@article{osti_1414103,
title = {Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer},
author = {Hayden, Steven C. and Junghans, Ann and Majewski, Jaroslaw and Firestone, Millicent A.},
abstractNote = {Neutron reflectometry was used to monitor structural variations in surface supported DMPC bilayers induced by the addition of Triton X-100, a surfactant commonly used to aid solubilization of membrane proteins, and the co-addition of a membrane spanning non-ionic amphiphilic triblock copolymer, (PEO117-PPO47-PEO117, Pluronic F98). Surfactant addition causes slight compression of the bilayer thickness and the creation of a distinct EO layer that increases the hydrophilic layer proximal to the supporting substrate (i.e., a water and EO gap between the lipid bilayer and quartz) to 6.8 ± 0.4 Å. Addition of the triblock copolymer into the DMPC: Triton X-100 bilayer increases the complexity (broadens) the lipid phase transition, further compresses the bilayer, and continues to expand the proximal hydrophilic layer thickness. The observed structural changes are temperature dependent with transmembrane polymer insertion achieved at 37 °C leading to a compressed membrane thickness of 39.2 ± 0.2 Å and proximal gap of 45.2 ± 0.2 Å. Temperature driven exclusion of the polymer at 15 °C causes partitioning of the polymer into the proximal space generating a large hydrogel cushion 162 ± 16 Å thick. An intermediate gap width (10 – 27 Å) is achieved at room temperature (22 – 25 °C). The temperature-driven changes in the proximal hydrophilic gap dimensions are shown to be reversible but thermal history causes variation in magnitude. Temperature-driven changes in polymer association with a supported lipid bilayer offer a facile means to reversibly control both the membrane characteristics as well as the separation between membrane and solid substrate.},
doi = {10.1021/acs.biomac.6b01461},
journal = {Biomacromolecules},
number = 4,
volume = 18,
place = {United States},
year = {Wed Feb 22 00:00:00 EST 2017},
month = {Wed Feb 22 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • Nickel-chelating lipids are general tools for anchoring polyhistidine-tagged proteins to supported lipid bilayers (SLBs), but controversy exists over the stability of the protein-lipid attachment. In this study, we show that chelator lipids are suitable anchors for building stable, biologically active surfaces but that a simple Langmuirian model is insufficient to describe their behavior. Desorption kinetics from chelator lipids are governed by the valency of surface binding: monovalently bound proteins desorb within minutes (t 1/2 ≈ 6 min), whereas polyvalently bound species remain bound for hours (t 1/2 ≈ 12 h). Evolution between surface states is slow, so equilibrium is unlikelymore » to be reached on experimental timescales. However, by tuning incubation conditions, the populations of each species can be kinetically controlled, providing a wide range of protein densities on SLBs with a single concentration of chelator lipid. In conclusion, we propose guidelines for the assembly of SLB surfaces functionalized with specific protein densities and demonstrate their utility in the formation of hybrid immunological synapses.« less
  • The relationship between molecular architecture and the nature of interactions with lipid bilayers has been studied for a series of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers using small-angle X-ray scattering (SAXS) and thermal analysis (differential scanning calorimetry, DSC). The number of molecular repeat units in the hydrophobic poly(propylene oxide), PPO, block has been found to be a critical determinant of the nature of triblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers possessing a PPO chain length commensurate with the acyl chain dimensions of the lipid bilayer yield highly ordered, swollen lamellar structures consistent with well-integrated (into themore » lipid bilayer) PPO blocks. Triblock copolymers of lesser PPO chain length yield materials with structural characteristics similar to a simple dispersion of DMPC in water. Increasing the concentration (from 4 to 12 mol %) of well-integrated triblock copolymers enhances the structural ordering of the lamellar phase, while concentrations exceeding 16 mol % result in the formation of a hexagonal phase. Examination of temperature-induced changes in the structure of these mesophases (complex fluids) reveals that if the temperature is reduced sufficiently, all compositions exclude polymer and thus exhibit the characteristic SAXS pattern for hydrated DMPC bilayers. Increasing the temperature promotes better insertion of the polymers possessing PPO chain lengths sufficient for membrane insertion. No temperature-induced structural changes are observed in compositions prepared with PEO-PPO-PEO polymers that feature PPO length insufficient to permit full incorporation into the lipid bilayer.« less
  • A fundamental attribute of cell membranes is transmembrane asymmetry, specifically the formation of ordered phase domains in one leaflet that are compositionally different from the opposing leaflet of the bilayer. Using model membrane systems, many previous studies have demonstrated the formation of ordered phase domains that display complete transmembrane symmetry but there have been few reports on the more biologically relevant asymmetric membrane structures. Here we report on a combined atomic force microscopy (AFM) and fluorescence microscopy study whereby we observe three different states of transmembrane symmetry in phase-separated supported bilayers formed by vesicle fusion. We find that if themore » leaflets differ in gel-phase area fraction, then the smaller domains in one leaflet are in registry with the larger domains in the other leaflet and the system is dynamic. In a presumed lipid flip-flop process similar to Ostwald Ripening, the smaller domains in one leaflet erode away while the large domains in the other leaflet grow until complete compositional asymmetry is reached and remains stable. We have quantified this evolution and determined that the lipid flip-flop event happens most frequently at the interface between symmetric and asymmetric DSPC domains. If both leaflets have nearly identical area fraction of gel-phase, gel-phase domains are in registry and are static in comparison to the first state. The stability of these three DSPC domain distributions, the degree of registry observed, and the domain immobility have direct biological significance with regards to maintenance of lipid asymmetry in living cell membranes, communication between inner leaflet and outer leaflet, membrane adhesion, and raft mobility.« less
  • Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when usedmore » in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.« less