skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles

Abstract

Type 4 700-bar compressed hydrogen storage tanks were modeled using ABAQUS. The finite element model was first calibrated against data for 35-L subscale test tanks to obtain the composite translation efficiency, and then applied to full sized tanks. Two variations of the baseline T700/epoxy composite were considered in which the epoxy was replaced with a low cost vinyl ester resin and low cost resin with an alternate sizing. The results showed that the reduction in composite weight was attributed primarily to the lower density of the resin and higher fiber volume fraction in the composite due to increased squeeze-out with the lower viscosity vinyl ester resin. The system gravimetric and volumetric capacities for the onboard storage system that holds 5.6 kg H-2 are 4.2 wt% (1.40 kWh/kg) and 24.4 g-H-2/L (0.81 kWh/L), respectively. The system capacities increase and carbon fiber requirement decreases if the in-tank amount of unrecoverable hydrogen is reduced by lowering the tank "empty" pressure. Models of an alternate tank design showed potential 4-7% saving in composite usage for tanks with a length-to-diameter (L/D) ratio of 2.8-3.0 but no saving for L/D of 1.7. A boss with smaller opening and longer flange does not appear to reduce themore » amount of helical windings.« less

Authors:
; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1413754
DOE Contract Number:
AC02-06CH11357
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Hydrogen Energy; Journal Volume: 42; Journal Issue: 40
Country of Publication:
United States
Language:
English
Subject:
700-bar compressed hydrogen; Carbon fiber usage; Finite element analysis; Hydrogen storage; Type 4 composite pressure vessels

Citation Formats

Hua, Thanh Q., Roh, Hee-Seok, and Ahluwalia, Rajesh K.. Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles. United States: N. p., 2017. Web. doi:10.1016/j.ijhydene.2017.08.123.
Hua, Thanh Q., Roh, Hee-Seok, & Ahluwalia, Rajesh K.. Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles. United States. doi:10.1016/j.ijhydene.2017.08.123.
Hua, Thanh Q., Roh, Hee-Seok, and Ahluwalia, Rajesh K.. 2017. "Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles". United States. doi:10.1016/j.ijhydene.2017.08.123.
@article{osti_1413754,
title = {Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles},
author = {Hua, Thanh Q. and Roh, Hee-Seok and Ahluwalia, Rajesh K.},
abstractNote = {Type 4 700-bar compressed hydrogen storage tanks were modeled using ABAQUS. The finite element model was first calibrated against data for 35-L subscale test tanks to obtain the composite translation efficiency, and then applied to full sized tanks. Two variations of the baseline T700/epoxy composite were considered in which the epoxy was replaced with a low cost vinyl ester resin and low cost resin with an alternate sizing. The results showed that the reduction in composite weight was attributed primarily to the lower density of the resin and higher fiber volume fraction in the composite due to increased squeeze-out with the lower viscosity vinyl ester resin. The system gravimetric and volumetric capacities for the onboard storage system that holds 5.6 kg H-2 are 4.2 wt% (1.40 kWh/kg) and 24.4 g-H-2/L (0.81 kWh/L), respectively. The system capacities increase and carbon fiber requirement decreases if the in-tank amount of unrecoverable hydrogen is reduced by lowering the tank "empty" pressure. Models of an alternate tank design showed potential 4-7% saving in composite usage for tanks with a length-to-diameter (L/D) ratio of 2.8-3.0 but no saving for L/D of 1.7. A boss with smaller opening and longer flange does not appear to reduce the amount of helical windings.},
doi = {10.1016/j.ijhydene.2017.08.123},
journal = {International Journal of Hydrogen Energy},
number = 40,
volume = 42,
place = {United States},
year = 2017,
month =
}
  • Hydrogen fuel cell electric vehicles (HFCEVs) are zero-emission vehicles (ZEVs) that can provide drivers a similar experience to conventional internal combustion engine vehicles (ICEVs), in terms of fueling time and performance (i.e. power and driving range). The Society of Automotive Engineers (SAE) developed fueling protocol J2601 for light-duty HFCEVs to ensure safe vehicle fills while maximizing fueling performance. This study employs a physical model that simulates and compares the fueling performance of two fueling methods, known as the “lookup table” method and the “MC formula” method, within the SAE J2601 protocol. Both the fueling methods provide fast fueling of HFCEVsmore » within minutes, but the MC formula method takes advantage of active measurement of precooling temperature to dynamically control the fueling process, and thereby provides faster vehicle fills. Here, the MC formula method greatly reduces fueling time compared to the lookup table method at higher ambient temperatures, as well as when the precooling temperature falls on the colder side of the expected temperature window for all station types. Although the SAE J2601 lookup table method is the currently implemented standard for refueling hydrogen fuel cell vehicles, the MC formula method provides significant fueling time advantages in certain conditions; these warrant its implementation in future hydrogen refueling stations for better customer satisfaction with fueling experience of HFCEVs.« less
  • An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stationsmore » and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.« less
  • An investigation was conducted on the emissions and efficiency from hydrogen blended compressed natural gas (CNG) in light duty vehicles. The different blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. The blends were tested using a Ford F-150 and a Chevrolet Silverado truck supplied by Arizona Public Services. Tests on emissions were performed using four different driving condition tests. Previous investigation by Don Karner and James Frankfort on a similar Ford F-150 using a 30% hydrogen blend showed that there was substantial reduction when compared to gasolinemore » in carbon monoxide (CO), nitrogen oxide (NOx), and carbon dioxide (CO2) emissions while the reduction in hydrocarbon (HC) emissions was minimal. This investigation was performed using different blends of CNG and hydrogen to evaluate the emissions reducing capabilities associated with the use of the different fuel blends. The results were then tested statistically to confirm or reject the hypotheses on the emission reduction capabilities. Statistically analysis was performed on the test results to determine whether hydrogen concentration in the HCNG had any effect on the emissions and the fuel efficiency. It was found that emissions from hydrogen blended compressed natural gas were a function of driving condition employed. Emissions were found to be dependent on the concentration of hydrogen in the compressed natural gas fuel blend.« less
  • Abstract not provided.