skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications

Authors:
;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1413538
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Nuclear Engineering and Design
Additional Journal Information:
Journal Volume: 318; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-12-15 02:04:46; Journal ID: ISSN 0029-5493
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Grunloh, T. P., and Manera, A. A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications. Netherlands: N. p., 2017. Web. doi:10.1016/j.nucengdes.2017.03.027.
Grunloh, T. P., & Manera, A. A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications. Netherlands. doi:10.1016/j.nucengdes.2017.03.027.
Grunloh, T. P., and Manera, A. Sat . "A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications". Netherlands. doi:10.1016/j.nucengdes.2017.03.027.
@article{osti_1413538,
title = {A novel multi-scale domain overlapping CFD/STH coupling methodology for multi-dimensional flows relevant to nuclear applications},
author = {Grunloh, T. P. and Manera, A.},
abstractNote = {},
doi = {10.1016/j.nucengdes.2017.03.027},
journal = {Nuclear Engineering and Design},
number = C,
volume = 318,
place = {Netherlands},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.nucengdes.2017.03.027

Save / Share:
  • The objective of this work is the development of a consistent mixing model for the two-way-coupling of a CFD code and a multi-zone code based on multiple zero-dimensional reactors. The two-way-coupling allows for a computationally efficient modeling of HCCI combustion. The physical domain in the CFD code is subdivided into multiple zones based on three phase variables (fuel mixture fraction, dilution, and total enthalpy). Those phase variables are sufficient for the description of the thermodynamic state of each zone, assuming that each zone is at the same pressure. Each zone in the CFD code is represented by a corresponding zonemore » in the zero-dimensional code. The zero-dimensional code solves the chemistry for each zone, and the heat release is fed back into the CFD code. The difficulty in facing this kind of methodology is to keep the thermodynamic state of each zone consistent between the CFD code and the zero-dimensional code after the initialization of the zones in the multi-zone code has taken place. The thermodynamic state of each zone (and thereby the phase variables) will change in time due to mixing and source terms (e.g., vaporization of fuel, wall heat transfer). The focus of this work lies on a consistent description of the mixing between the zones in phase space in the zero-dimensional code, based on the solution of the CFD code. Two mixing models with different degrees of accuracy, complexity, and numerical effort are described. The most elaborate mixing model (and an appropriate treatment of the source terms) keeps the thermodynamic state of the zones in the CFD code and the zero-dimensional code identical. The models are applied to a test case of HCCI combustion in an engine. (author)« less
  • The objective of this work is the development of a consistent mixing model for the two-way-coupling of a CFD code and a multi-zone code based on multiple zero-dimensional reactors. The two-way-coupling allows for a computationally efficient modeling of HCCI combustion. The physical domain in the CFD code is subdivided into multiple zones based on three phase variables (fuel mixture fraction, dilution, and total enthalpy). Those phase variables are sufficient for the description of the thermodynamic state of each zone, assuming that each zone is at the same pressure. Each zone in the CFD code is represented by a corresponding zonemore » in the zero-dimensional code. The zero-dimensional code solves the chemistry for each zone, and the heat release is fed back into the CFD code. The difficulty in facing this kind of methodology is to keep the thermodynamic state of each zone consistent between the CFD code and the zero-dimensional code after the initialization of the zones in the multi-zone code has taken place. The thermodynamic state of each zone (and thereby the phase variables) will change in time due to mixing and source terms (e.g., vaporization of fuel, wall heat transfer). The focus of this work lies on a consistent description of the mixing between the zones in phase space in the zero-dimensional code, based on the solution of the CFD code. Two mixing models with different degrees of accuracy, complexity, and numerical effort are described. The most elaborate mixing model (and an appropriate treatment of the source terms) keeps the thermodynamic state of the zones in the CFD code and the zero-dimensional code identical. The models are applied to a test case of HCCI combustion in an engine. (author)« less
  • This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less
  • We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less