skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach

Abstract

Scalar and pseudo-scalar resonances decaying to top quarks are common predictions in several scenarios beyond the standard model (SM) and are extensively searched for by LHC experiments. Challenges on the experimental side require optimising the strategy based on accurate predictions. Firstly, QCD corrections are known to be large both for the SM QCD background and for the pure signal scalar production. Secondly, leading order and approximate next-to-leading order (NLO) calculations indicate that the interference between signal and background is large and drastically changes the lineshape of the signal, from a simple peak to a peak-dip structure. Therefore, a robust prediction of this interference at NLO accuracy in QCD is necessary to ensure that higher-order corrections do not alter the lineshapes. We compute the exact NLO corrections, assuming a point-like coupling between the scalar and the gluons and consistently embedding the calculation in an effective field theory within an automated framework, and present results for a representative set of beyond the SM benchmarks. The results can be further matched to parton shower simulation, providing more realistic predictions. We find that NLO corrections are important and lead to a significant reduction of the uncertainties. We also discuss how our computation can bemore » used to improve the predictions for physics scenarios where the gluon-scalar loop is resolved and the effective approach is less applicable.« less

Authors:
 [1];  [2];  [3]
  1. Gottingen Univ. (Germany). Inst. of Physics
  2. Nikhef, Amsterdam (Netherlands)
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Dept. of Physics; Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Nikhef, Amsterdam (Netherlands); Chinese Academy of Sciences (CAS), Beijing (China)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); European Union (EU); Netherlands Organisation for Scientific Research (NWO); Chinese Academy of Sciences (CAS)
OSTI Identifier:
1412736
Report Number(s):
BNL-114557-2017-JA
Journal ID: ISSN 1029-8479; KA2401012; TRN: US1800335
Grant/Contract Number:  
SC0012704; 722104
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of High Energy Physics (Online)
Additional Journal Information:
Journal Volume: 2017; Journal Issue: 10; Journal ID: ISSN 1029-8479
Publisher:
Springer Berlin
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; NLO computations; QCD phenomenology

Citation Formats

Franzosi, Diogo Buarque, Vryonidou, Eleni, and Zhang, Cen. Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach. United States: N. p., 2017. Web. doi:10.1007/JHEP10(2017)096.
Franzosi, Diogo Buarque, Vryonidou, Eleni, & Zhang, Cen. Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach. United States. https://doi.org/10.1007/JHEP10(2017)096
Franzosi, Diogo Buarque, Vryonidou, Eleni, and Zhang, Cen. 2017. "Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach". United States. https://doi.org/10.1007/JHEP10(2017)096. https://www.osti.gov/servlets/purl/1412736.
@article{osti_1412736,
title = {Scalar production and decay to top quarks including interference effects at NLO in QCD in an EFT approach},
author = {Franzosi, Diogo Buarque and Vryonidou, Eleni and Zhang, Cen},
abstractNote = {Scalar and pseudo-scalar resonances decaying to top quarks are common predictions in several scenarios beyond the standard model (SM) and are extensively searched for by LHC experiments. Challenges on the experimental side require optimising the strategy based on accurate predictions. Firstly, QCD corrections are known to be large both for the SM QCD background and for the pure signal scalar production. Secondly, leading order and approximate next-to-leading order (NLO) calculations indicate that the interference between signal and background is large and drastically changes the lineshape of the signal, from a simple peak to a peak-dip structure. Therefore, a robust prediction of this interference at NLO accuracy in QCD is necessary to ensure that higher-order corrections do not alter the lineshapes. We compute the exact NLO corrections, assuming a point-like coupling between the scalar and the gluons and consistently embedding the calculation in an effective field theory within an automated framework, and present results for a representative set of beyond the SM benchmarks. The results can be further matched to parton shower simulation, providing more realistic predictions. We find that NLO corrections are important and lead to a significant reduction of the uncertainties. We also discuss how our computation can be used to improve the predictions for physics scenarios where the gluon-scalar loop is resolved and the effective approach is less applicable.},
doi = {10.1007/JHEP10(2017)096},
url = {https://www.osti.gov/biblio/1412736}, journal = {Journal of High Energy Physics (Online)},
issn = {1029-8479},
number = 10,
volume = 2017,
place = {United States},
year = {Fri Oct 13 00:00:00 EDT 2017},
month = {Fri Oct 13 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Probing top-Z dipole moments at the LHC and ILC
journal, August 2015


QCD corrections to hadronic Higgs decays
journal, April 1996


HiggsBounds: Confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron
journal, January 2010


Non-resonant new physics in top pair production at hadron colliders
journal, March 2011


Parton distributions with QED corrections
journal, December 2013


Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD
journal, May 2016


The hunt for the rest of the Higgs bosons
journal, June 2015


Higgs decay to top quarks at hadron colliders
journal, July 1994


Can vanishing mass-on-shell interactions generate a dip at colliders?
journal, July 2015


Top pair invariant mass distribution: a window on new physics
journal, January 2009


HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC
journal, February 2014


Predictions for all processes e+e− → fermions + γ
journal, November 1999


On the maximal use of Monte Carlo samples: re-weighting events at NLO accuracy
journal, December 2016


Technipion limits from LHC Higgs searches
journal, December 2011


Soft gluon radiation in Higgs boson production at the LHC
journal, February 1998


Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O ( α S 4 )
journal, June 2013


Giving top quark effective operators a boost
journal, December 2016


Electric dipole moment of the electron and of the neutron
journal, July 1990


Theory and phenomenology of two-Higgs-doublet models
journal, July 2012


Hadronic Higgs production through NLO  $$+$$ +  PS in the SM, the 2HDM and the MSSM
journal, June 2015


Electroweak corrections to charged-current fermion processes: Technical details and further results
journal, September 2005


A brief introduction to PYTHIA 8.1
journal, June 2008


Higgs boson production at the LHC
journal, October 1995


Search for new color-octet vector particle decaying to <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>t</mml:mi><mml:mover accent="true"><mml:mi>t</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:math> in <mml:math altimg="si2.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>p</mml:mi><mml:mover accent="true"><mml:mi>p</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:math> collisions at <mml:math altimg="si3.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:msqrt><mml:mi>s</mml:mi></mml:msqrt><mml:mo>=</mml:mo><mml:mn>1.96</mml:mn><mml:mtext> TeV</mml:mtext></mml:math>
journal, August 2010


Constraining couplings of top quarks to the Z boson in t t ¯ $$ t\overline{t} $$ + Z production at the LHC
journal, July 2014


Higgs pair production at the LHC with NLO and parton-shower effects
journal, May 2014


Higgs production and decay into heavy flavours with the gluon fusion mechanism
journal, October 1984


Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD
journal, October 2016


Flavor Changing Neutral Coupling Mediated Radiative Top Quark Decays at Next-to-Leading Order in QCD
journal, June 2010


A minimal set of top anomalous couplings
journal, May 2009


Weak interaction corrections to hadronic top quark pair production
journal, December 2006


Top-pair production at hadron colliders with next-to-next-to-leading logarithmic soft-gluon resummation
journal, April 2012


Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations
journal, March 2013


2HDMC – two-Higgs-doublet model calculator
journal, January 2010


Higgs Boson Gluon-Fusion Production in QCD at Three Loops
journal, May 2015


2HDMC — two-Higgs-doublet model calculator
journal, April 2010


Higgs pair production at the LHC with NLO and parton-shower effects
text, January 2014


Non-resonant New Physics in Top Pair Production at Hadron Colliders
text, January 2010


Technipion Limits from LHC Higgs Searches
text, January 2011


Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations
text, January 2012


Experimental constraints on the coupling of the Higgs boson to electrons
text, January 2015


Off-shell single-top production at NLO matched to parton showers
text, January 2016


Di-boson signatures as Standard Candles for Partial Compositeness
text, January 2016


Weak interaction corrections to hadronic top quark pair production
text, January 2006


Works referencing / citing this record:

Constraining scalar resonances with top-quark pair production at the LHC
journal, March 2018


Interference effects in t t ¯ $$ t\overline{t} $$ production at the LHC as a window on new physics
journal, March 2019


Di-Higgs boson peaks and top valleys: Interference effects in Higgs sector extensions
journal, January 2020


Di-Higgs boson peaks and top valleys: Interference effects in Higgs sector extensions
text, January 2020


Automated simulations beyond the Standard Model: supersymmetry
text, January 2019


Automated simulations beyond the Standard Model: supersymmetry
text, January 2019