skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Summary of April 10, 2017 Lattice

Abstract

We present a summary of the April 17, 2017 CBETA Lattice.

Authors:
 [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
1412723
Report Number(s):
BNL-114547-2017-IR
DOE Contract Number:
SC0012704
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Berg, J. S. Summary of April 10, 2017 Lattice. United States: N. p., 2017. Web. doi:10.2172/1412723.
Berg, J. S. Summary of April 10, 2017 Lattice. United States. doi:10.2172/1412723.
Berg, J. S. Fri . "Summary of April 10, 2017 Lattice". United States. doi:10.2172/1412723. https://www.osti.gov/servlets/purl/1412723.
@article{osti_1412723,
title = {Summary of April 10, 2017 Lattice},
author = {Berg, J. S.},
abstractNote = {We present a summary of the April 17, 2017 CBETA Lattice.},
doi = {10.2172/1412723},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Apr 28 00:00:00 EDT 2017},
month = {Fri Apr 28 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • A trend summary of four Solvent Hold Tank (SHT) monthly samples; MCU-16-122-124 (March 2017), MCU-17-130-132 (April 2017), MCU-17-133-135 (May 2017), and MCU-17-141-149 (June 2017) are reported. Analyses of the June SHT sample (MCU-17-141-149) indicated that the modifier (CS-7SB) and the extractant (MaxCalix) concentrations were slightly below (4% each) their nominal recommended levels (169,000 mg/L and 46,400 mg/L respectively). The suppressor (TiDG) level has decreased since the January 2017 measurement but has remained steady in the range of 666 to 705 mg/L, well above the minimum recommended level (479 mg/L), but below the nominal level. The “flat” trends observed in themore » TiDG, MaxCalix, modifier, and Gamma measurement are consistent with the solvent being idle since January 10, 2017.« less
  • The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform andmore » deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.« less
  • Two surface samples (HTF-10-17-30 and HTF-10-17-31) and two variable depth samples (HTF-10-17-32 and HTF-10-17-33) were collected from SRS Tank 10 during March 2017 and submitted to SRNL for characterization. At SRNL, the two surface samples were combined in one container, the two variable depth samples (VDSs) were combined in another container, and then the two composite samples were each characterized by a series of physical, ionic, radiological, and elemental analysis methods. The surface sample composite was characterized primarily for Tank Farm corrosion control purposes, while the VDS composite was characterized primarily for Tank Closure Cesium Removal (TCCR) purposes.
  • IIn March 2015, the U.S. Department of Energy (DOE) released Wind Vision: A New Era for Wind Power in the United States (DOE 2015), which explores a scenario in which wind provides 10 percent of U.S. electricity in 2020, 20 percent in 2030, and 35 percent in 2050. The Wind Vision report also includes a roadmap of recommended actions aimed at pursuit of the vision and its underlying wind-deployment scenario. The roadmap was compiled by the Wind Vision project team, which included representatives from the industrial, electric-power, government-laboratory, academic, environmental-stewardship, regulatory, and permitting stakeholder groups. The roadmap describes high-level activitiesmore » suitable for all sectors with a stake in wind power and energy development. It is intended to be a 'living document,' and DOE expects to engage the wind community from time to time to track progress.« less