skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: FFAG Cell Candidate February 2017

Abstract

The magnets for the CBETA “First Girder” have been ordered on the basis of the FFAG cell given in note [CBETA001]. However, detailed dynamics studies of this cell have shown the 42MeV energy is close to a Q x+2Q y=1 cell resonance [CBETA007]. The cell intended for the final CBETA machine was therefore retuned to avoid this resonance.

Authors:
 [1]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
1412717
Report Number(s):
BNL-114541-2017-IR
DOE Contract Number:
SC0012704
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
43 PARTICLE ACCELERATORS

Citation Formats

Brooks, S. FFAG Cell Candidate February 2017. United States: N. p., 2017. Web. doi:10.2172/1412717.
Brooks, S. FFAG Cell Candidate February 2017. United States. doi:10.2172/1412717.
Brooks, S. Thu . "FFAG Cell Candidate February 2017". United States. doi:10.2172/1412717. https://www.osti.gov/servlets/purl/1412717.
@article{osti_1412717,
title = {FFAG Cell Candidate February 2017},
author = {Brooks, S.},
abstractNote = {The magnets for the CBETA “First Girder” have been ordered on the basis of the FFAG cell given in note [CBETA001]. However, detailed dynamics studies of this cell have shown the 42MeV energy is close to a Qx+2Qy=1 cell resonance [CBETA007]. The cell intended for the final CBETA machine was therefore retuned to avoid this resonance.},
doi = {10.2172/1412717},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Feb 23 00:00:00 EST 2017},
month = {Thu Feb 23 00:00:00 EST 2017}
}

Technical Report:

Save / Share:
  • A trend summary of three Solvent Hold Tank (SHT) monthly samples; MCU-16-1488-1493 (December 2016), MCU-17-86-88 (January 2017), and MCU-17-119-121 (February 2017) are reported. Analyses indicate that the modifier (CS-7SB) and the extractant (MaxCalix) concentrations are at their nominal recommended levels (169,000 mg/L and 46,300 mg/L respectively). The suppressor (TiDG) level has decreased to a steady state level of 673 mg/L well above the minimum recommended level (479 mg/L). This analysis confirms the Isopar™ addition to the solvent in January 18, 2017. This analysis also indicates the solvent did not require further additions. Based on the current monthly sample, the levelsmore » of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). Another impurity observed in the samples was mercury. Up to 38 ± 8 micrograms of mercury per mL of solvent was detected in these samples (the average of the CV-AA and XRF methods). The higher mercury concentration in the solvent (as determined in the last three monthly samples) is possibly due to the higher mercury concentration in Salt Batches 8 and 9 (Tank 49H) or mixing of previously undisturbed areas of high mercury concentration in Tank 49H. The gamma level (0.21E5 dpm/mL) measured in the February SHT sample was one order of magnitude lower than the gamma levels observed in the December and January SHT samples. The February gamma level is consistent with the solvent being idle (since January 10, 2017). The gamma levels observed in the December and January SHT samples were consistent with previous monthly measurements where the process operated normally. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less
  • A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced one year of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the twelve-month period ranging from 17% to 132%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism Solar. The most dramatic increase in performance was seen among the vertically mounted, west-facing modules,more » where the bifacial modules produced more than double the energy of monofacial modules in the same orientation. Because peak energy generation (mid- morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).« less
  • The proposed electron accelerator of the eRHIC complex [1] will use a 1.32 GeV Energy Recovery Linac (ERL) to accelerate the e-bunches to a top energy of 21.2 GeV before they collide with the hadron bunches. The e-bunches attain the 21.2 GeV energy after passing through the ERL 16 times as they recirculate in two rings which are placed alongside the RHIC hadron accelerator. The two rings [1] are made of periodic cells and each cell is made of one focusing and one defocusing permanent magnet qudrupole. In this paper we present the electromagnetic calculations of the 2D and 3Dmore » models of a cell which is comprised of two modified Halbach quadrupoles [4], and the optical properties of the cell.« less